133. On Quasi-normed Spaces. II

By Tomoko Konda

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1959)

In this paper, we shall consider some theorems in (QN)-spaces. For definitions and notations, see my paper [2], M. Pavel [3] and S. Rolewicz [4].

First of all, we shall prove the following

Lemma. If L is a proper subspace of the (QN)-space E with the power r, then for any $\varepsilon > 0$ and the element y of E such that ||y|| = 1, every element x of L satisfies the inequality $||x-y|| > 1-\varepsilon$.

Proof. We take an element $y_0 \in E$ such that $y_0 \notin L$ and put $d = \inf_{x \in L} ||y_0 - x||$. Then we have d > 0. For any $\eta > 0$, we select also an element $x_0 \in L$ such that $d \leq ||y_0 - x_0|| < d + \eta$. The element $y = \frac{y_0 - x_0}{||y_0 - x_0||^{1/r}}$ is not contained in L, for if y is in L then y_0 must be in L. Moreover ||y|| = 1 and for any $x \in L$, $x' = x_0 + ||y_0 - x_0||^{1/r}x$ and $x' \in L$, we have

$$egin{aligned} &\|y\!-\!x\,\|\!=\!\left\|\!\left|\!\left|\!\left|\!\frac{y_{\scriptscriptstyle 0}\!-\!x_{\scriptscriptstyle 0}}{\|y_{\scriptscriptstyle 0}\!-\!x_{\scriptscriptstyle 0}\|^{1/r}}\!-\!x
ight\|\!=\!rac{1}{\|y_{\scriptscriptstyle 0}\!-\!x_{\scriptscriptstyle 0}\|}\,\|y_{\scriptscriptstyle 0}\!-\!x'\,\|\!>\!rac{1}{d+\eta}\,\|y_{\scriptscriptstyle 0}\!-\!x'\,\|\!\geq\!rac{d}{d+\eta}\!=\!1\!-\!rac{\eta}{d+\eta}. \end{aligned}$$

Since η is arbitrary, we can take η such that $\frac{\eta}{d+\eta} < \varepsilon$ and $\eta > 0$. Thus we have the desired result.

Theorem I. A subspace L of a (QN)-space E with the power r is a finite dimensional space if and only if any bounded subset of L is compact. (For Banach space, see [1, pp. 76-78].)

Proof. Necessary. Let L be n-dimensional. Any element $x \in L$ is of form $x = \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ with a base $\{x_i\}$ of L for $i = 1, 2, \dots, n$.

Let $\{y_k\}$ be a bounded sequence in L, then we can write $y_k = \lambda_1^{(k)} x_1 + \cdots + \lambda_n^{(k)} x_n$ for $k=1, 2, \cdots$. By the boundness of $\{y_k\}$ there exists M such that $||y_k|| \leq M$ for $k=1, 2, \cdots$ and it may be proved that the sum $|\lambda_1^{(k)}|^r + \cdots + |\lambda_n^{(k)}|^r$ is bounded. For if the sum is not bounded, then there exists a sequence of indexes K_1, K_2, \cdots such that

 $|\lambda_1^{(k_m)}|^r + |\lambda_2^{(k_m)}|^r + \cdots + |\lambda_n^{(k_m)}|^r = c_m \ge m.$

Let $y_{k_m}^* = \frac{1}{c_m^{1/r}} y_{k_m}$, then we have

$$||y_{k_m}^*|| = \frac{1}{c_m} ||y_{k_m}|| \le \frac{1}{c_m} M \le \frac{M}{m}$$