131. On Some Properties of Intermediate Logics

By Toshio UMEZAWA

Mathematical Institute, Nagoya University, Nagoya, Japan (Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1959)

In [1] I investigated inclusion and non-inclusion between certain intermediate predicate logics. The purpose of this note is to prove some properties of intermediate logics. We use in this note the same notations as in [1] without definitions.

1. Interpretation of classical logic. THEOREM 1. LK° and LMK° are minimal in the set of all predicate logics which have the properties (I) and (II) respectively.

(I) For any K-provable sequent $\Gamma \rightarrow E$, the sequent $77\Gamma \rightarrow 77E$ is provable.

(II) For any K-provable sequent $\Gamma \rightarrow \Delta$, the sequent $77\Gamma \rightarrow 77\Delta$ is provable.

PROOF. First we prove that (I) and (II) hold in LK° and LMK° respectively. For (I) we use as a deductive system of K-provable sequents the rules of inference in Gentzen's LJ [2] with the axiom schemes $A \rightarrow A$ and $\rightarrow A \lor 7A$. As for $A \rightarrow A$ and $\rightarrow A \lor 7A$ (I) clearly holds. Let us assume that (I) holds for the upper sequent(s) of any rule of inference. This is proved by an inductive method. As an example, we treat $\rightarrow V$. From $77\Gamma \rightarrow 77A(a)$ we obtain $77\Gamma \rightarrow Vx77A(x)$. Since $Vx77A(x) \rightarrow 77VxA(x)$ is provable in LK° , we obtain $77\Gamma \rightarrow 77VxA(x)$, which shows that (I) holds for the lower sequent of $\rightarrow V$.

For (II) we use Gentzen's LK as a deductive system of K-provable $\Gamma \rightarrow \Delta$. Only $\rightarrow 7$ and $\rightarrow V$ are the rules of inference which use MK° in a proof of LMK° . We prove (II) only for $\rightarrow V$. From $77\Gamma \rightarrow 77\Delta$, 77A(a) we obtain 7A(a), $77\Gamma \rightarrow 77\Delta$ and hence $\Im x 7A(x)$, $77\Gamma \rightarrow 77\Delta$. Thence $77\Im x 7A(x)$, $77\Gamma \rightarrow 77\Delta$ is provable. Hence, by applying a cut with this sequent and MK° as the upper sequents of the cut, we obtain $77\Gamma \rightarrow 77\Delta$, 77VxA(x).

Secondly, let us assume that LZ and LY have the properties (I) and (II) respectively. Since $\rightarrow Vx(A(x) \lor 7A(x))$ is K-provable, $\rightarrow 77Vx(A(x))$ $\lor 7A(x)$) is Z-provable and hence $LZ \supseteq LK^{\circ}$. In the same way we see that $\rightarrow 77VxA(x)$, $77\Im x7A(x)$ is Y-provable and hence $LY \supseteq LMK^{\circ}$ since $\rightarrow VxA(x)$, $\Im x7A(x)$ is K-provable.

2. Decomposition of sequent scheme. We mean by $A \leftrightarrow B$ that both $A \rightarrow B$ and $B \rightarrow A$. In LJ' the following equivalences are provable.