131．On Some Properties of Intermediate Logics

By Toshio Umezawa
Mathematical Institute，Nagoya University，Nagoya，Japan
（Comm．by Z．Suetuna，m．J．A．，Dec．12，1959）

In［1］I investigated inclusion and non－inclusion between certain intermediate predicate logics．The purpose of this note is to prove some properties of intermediate logics．We use in this note the same notations as in［1］without definitions．

1．Interpretation of classical logic．Theorem 1．$L K^{\circ}$ and $L M K^{\circ}$ are minimal in the set of all predicate logics which have the properties （I）and（II）respectively．
（I）For any K－provable sequent $\Gamma \rightarrow E$ ，the sequent $7>\Gamma \rightarrow 7>E$ is provable．
（II）For any K－provable sequent $\Gamma \rightarrow \Delta$ ，the sequent $7>\Gamma \rightarrow 7>\Delta$ is provable．

Proof．First we prove that（I）and（II）hold in $L K^{\circ}$ and $L M K^{\circ}$ respectively．For（I）we use as a deductive system of K－provable sequents the rules of inference in Gentzen＇s $L J$［2］with the axiom schemes $A \rightarrow A$ and $\rightarrow A \vee>A$ ．As for $A \rightarrow A$ and $\rightarrow A \vee>A$（I）clearly holds．Let us assume that（I）holds for the upper sequent（s）of any rule of inference．This is proved by an inductive method．As an example，we treat $\rightarrow V$ ．From $7>\Gamma \rightarrow フ 7 A(a)$ we obtain $7>\Gamma \rightarrow$ $\forall x \gg A(x)$ ．Since $\forall x \gg A(x) \rightarrow \neg \neg \forall x A(x)$ is provable in $L K^{\circ}$ ，we obtain $フ 7 \Gamma \rightarrow フ \supset \forall x A(x)$ ，which shows that（I）holds for the lower sequent of $\rightarrow V$ ．

For（II）we use Gentzen＇s $L K$ as a deductive system of K－provable $\Gamma \rightarrow \Delta$ ．Only $\rightarrow 7$ and $\rightarrow V$ are the rules of inference which use $M K^{\circ}$ in a proof of $L M K^{\circ}$ ．We prove（II）only for $\rightarrow V$ ．From $フ>\Gamma \rightarrow フ>\Delta$ ， $77 A(a)$ we obtain $7 A(a), 7>\Gamma \rightarrow フ 7 \Delta$ and hence $\mathcal{H} x>A(x),>フ \Gamma \rightarrow$ $7>\Delta$ ．Thence $7>\mathcal{H} x>A(x), \gg \Gamma \rightarrow フ>\Delta$ is provable．Hence，by apply－ ing a cut with this sequent and $M K^{\circ}$ as the upper sequents of the cut，we obtain $7>\Gamma \rightarrow 7>\Delta, 7>\forall x A(x)$ ．

Secondly，let us assume that $L Z$ and $L Y$ have the properties（I）and （II）respectively．Since $\rightarrow \forall x(A(x) \vee>A(x))$ is K－provable，$\rightarrow \gg \forall x(A(x)$ $\vee>A(x))$ is Z－provable and hence $L Z \supseteq L K^{\circ}$ ．In the same way we see that $\rightarrow フ>\forall x A(x), 7>H x>A(x)$ is Y－provable and hence $L Y \supseteq L M K^{\circ}$ since $\rightarrow \forall x A(x)$ ，出 $x>A(x)$ is K－provable．

2．Decomposition of sequent scheme．We mean by $A \leftrightarrow B$ that both $A \rightarrow B$ and $B \rightarrow A$ ．In $L J^{\prime}$ the following equivalences are provable．

