10. On a Problem of Royden on Quasiconformal Equivalence of Riemann Surfaces

By Mitsuru NaKai
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1960)

1. Definitions and problem. We denote by $\operatorname{HBD}(R)$ the totality of complex-valued bounded harmonic functions on a Riemann surface R with finite Dirichlet integrals. We use the following convention. If R is of null boundary, then the complex number field C is considered not to be contained in $H B D(R)$, that is, the constant function is not $H B D$-function and hence $H B D(R)$ is empty. On the other hand, if R is of positive boundary, then C is considered to be contained in $H B D(R)$.

Now consider the set $A(R)$ of all bounded and continuously differentiable functions on R with finite Dirichlet integrals. Then there exists a compact Hausdorff space \widetilde{R} containing R as its open dense subset and any function in $A(R)$ is continuously extended to \widetilde{R}. Such a space \widetilde{R} is unique up to a homeomorphism fixing R. The set ∂R $=\widetilde{R}-R$ is called the ideal boundary of R.

Let $\left\{R_{n}\right\}_{n=0}^{\infty}$ be an exhaustion of R with $R_{0}=$ empty set. For each n, consider the family $\left\{F^{(n)}\right\}$ of closed subsets $F^{(n)}$ of $\widetilde{R}-R_{n}$ such that any real-valued continuous function on $\widetilde{R}-R_{n}$, which belongs to $H B D\left(R-\bar{R}_{n}\right)$, takes its maximum and minimum on $F^{(n)}$. The set

$$
\bigcap_{\left.n=0 \mid F^{(n)}\right]}^{\infty} \prod^{(n)}
$$

is empty or the compact subset of ∂R. We denote this set by $\partial_{1} R$. Denote by $A_{1}(R)$ the totality of functions in $A(R)$ which vanish on $\partial_{1} R$. Then any function f in $A(R)$ is decomposed into two parts u in $H B D(R)$ and $f-u$ in $A_{1}(R)$. This decomposition is unique and so we denote u by πf. Then it holds that

$$
D[\pi f, f-\pi f]=\iint_{R} d(\pi f) \wedge * d \overline{(f-\pi f)}=0
$$

Consider the following algebraic operations in $H B D(R)$: for arbitrary two functions u and v in $H B D(R)$ and for any complex number a, we define addition, scalar multiplication and multiplication by the following

$$
\begin{aligned}
& (u+v)(p)=u(p)+v(p) ; \\
& (a u)(P)=a(u(p)) ; \\
& (u \times v)(p)=(\pi(u v))(p),
\end{aligned}
$$

