6. On Some Properties of Group Characters

By Masaru Osima
Department of Mathematics, Okayama University
(Comm. by K. Shoda, M.J.A., Jan. 12, 1960)

Let ${ }^{5}$ be a group of finite order and let p be a fixed prime number. An element is called a p-element of \mathscr{E} if its order is a power of p. An arbitrary element G of \mathscr{S} can be written uniquely as a product $P R$ of two commutative elements where P is a p-element, while R is a p regular element, i.e. an element whose order is prime to p. We shall call P the p-factor of G and R the p-regular factor of G. We define the section $\mathbb{S}(P)$ of a p-element P as the set of all elements of $\mathscr{S H}^{5}$ whose p-factor is conjugate to P in $\mathscr{S H}^{2}$. Let \mathscr{R}_{ν} be a class of conjugate elements which contains an element whose p-factor is P. Then $\mathbb{S}(P)$ is the union of these classes \mathscr{R}_{ν}. Let $P_{1}=1, P_{2}, \cdots, P_{h}$ be a system of p-elements such that they all lie in different classes of conjugate elements, but that every p-element is conjugate to one of them. Then all elements of \mathscr{S}^{5} are distributed into h sections $\mathbb{S}\left(P_{i}\right)$.

We consider the representations of \mathscr{S} in the field of all complex numbers. Let $\chi_{1}, \chi_{2}, \cdots, \chi_{n}$ be the distinct irreducible characters of $(\mathbb{B}$. Then the χ_{i} are distributed into a certain number of blocks $B_{1}, B_{2}, \cdots, B_{t}$. We denote by \bar{a} the conjugate of a complex number a. Then $\bar{\chi}_{i}(G)$ $=\chi_{i}\left(G^{-1}\right)$. In [1] the following theorem has been stated without proof:

Let B be a block of (5). If the elements G and H of $\mathscr{S H}^{(5)}$ belong to different sections of $(\mathbb{S}$, then

$$
\begin{equation*}
\sum \chi_{i}(G) \bar{\chi}_{i}(H)=0 \tag{1}
\end{equation*}
$$

where the sum extends over all $\chi_{i} \in B$.
Recently the proof of this theorem was given in [2]. In this note, corresponding to the above theorem, we shall prove the following

Theorem 1. Let $\mathbb{S}(P)$ be a section of (5. If the characters χ_{i} and χ_{j} belong to different blocks, then

$$
\sum^{\prime} \chi_{i}(G) \bar{\chi}_{j}(G)=0
$$

where the sum extends over all $G \in \mathbb{S}(P)$.
As a consequence of Theorem 1, some new results are also obtained.

1. Let $\Omega_{\nu}(\nu=1,2, \cdots, n)$ be the classes of conjugate elements in \mathscr{S}° and let G_{ν} be a representative of \mathscr{R}_{ν}. We shall first prove the following

Lemma. If $\sum_{\nu=1}^{n} a_{\nu} \chi_{i}\left(G_{\nu}\right)=0$ for all $\chi_{i} \in B$, then $\sum_{\alpha}^{\prime} a_{\alpha} \chi_{i}\left(G_{\alpha}\right)=0$ where the sum extends over all $\AA_{\alpha} \in \mathbb{S}(P)$.

Proof. Let \mathfrak{R}_{β} be a class belonging to $\mathfrak{S}(P)$. We multiply by

