6. On Some Properties of Group Characters

By Masaru OSIMA

Department of Mathematics, Okayama University (Comm. by K. SHODA, M.J.A., Jan. 12, 1960)

Let \mathfrak{G} be a group of finite order and let p be a fixed prime number. An element is called a p-element of \mathfrak{G} if its order is a power of p. An arbitrary element G of \mathfrak{G} can be written uniquely as a product PR of two commutative elements where P is a p-element, while R is a pregular element, i.e. an element whose order is prime to p. We shall call P the p-factor of G and R the p-regular factor of G. We define the section $\mathfrak{S}(P)$ of a p-element P as the set of all elements of \mathfrak{G} whose p-factor is conjugate to P in \mathfrak{G} . Let \mathfrak{R}_{ν} be a class of conjugate elements which contains an element whose p-factor is P. Then $\mathfrak{S}(P)$ is the union of these classes \mathfrak{R}_{ν} . Let $P_1=1, P_2, \dots, P_h$ be a system of p-elements such that they all lie in different classes of conjugate elements, but that every p-element is conjugate to one of them. Then all elements of \mathfrak{G} are distributed into h sections $\mathfrak{S}(P_i)$.

We consider the representations of \mathfrak{G} in the field of all complex numbers. Let $\chi_1, \chi_2, \dots, \chi_n$ be the distinct irreducible characters of \mathfrak{G} . Then the χ_i are distributed into a certain number of blocks B_1, B_2, \dots, B_i . We denote by \overline{a} the conjugate of a complex number a. Then $\overline{\chi}_i(G) = \chi_i(G^{-1})$. In [1] the following theorem has been stated without proof:

Let B be a block of \mathfrak{G} . If the elements G and H of \mathfrak{G} belong to different sections of \mathfrak{G} , then

(1) $\sum \chi_i(G)\overline{\chi}_i(H)=0$

where the sum extends over all $\chi_i \in B$.

Recently the proof of this theorem was given in [2]. In this note, corresponding to the above theorem, we shall prove the following

Theorem 1. Let $\mathfrak{S}(P)$ be a section of \mathfrak{G} . If the characters χ_i and χ_j belong to different blocks, then

$$\sum' \chi_i(G) \overline{\chi}_j(G) = 0$$

where the sum extends over all $G \in \mathfrak{S}(P)$.

As a consequence of Theorem 1, some new results are also obtained.

1. Let \Re_{ν} ($\nu=1, 2, \dots, n$) be the classes of conjugate elements in \mathfrak{G} and let G_{ν} be a representative of \Re_{ν} . We shall first prove the following

Lemma. If $\sum_{\nu=1}^{n} a_{\nu}\chi_{i}(G_{\nu}) = 0$ for all $\chi_{i} \in B$, then $\sum_{\alpha}' a_{\alpha}\chi_{i}(G_{\alpha}) = 0$ where the sum extends over all $\Re_{\alpha} \in \mathfrak{S}(P)$.

Proof. Let \Re_{β} be a class belonging to $\mathfrak{S}(P)$. We multiply by