18. A Continuity Theorem in the Potential Theory

By Masanori Kishi

Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1960)

Introduction. Let Ω be a locally compact separable metric space and let Φ be a positive symmetric kernel satisfying the continuity principle, that is, let Φ be a real-valued continuous function defined on the product space $\Omega \times \Omega$ such that

1° $0 < \Phi(P, Q) \le +\infty$,

No. 2]

 $2^{\circ} \quad \varPhi(P,Q)$ is finite except at most at the points of diagonal set of $\Omega \times \Omega$,

 $3^{\circ} \quad \Phi(P,Q) = \Phi(Q,P),$

 4° for any compact set $K \subset \Omega$ and for any positive number ε , there is a compact set L such that

 $\Phi(P,Q) < \varepsilon \quad \text{on } K \times (\Omega - L),$

 5° if a potential U^{μ} of a positive measure μ with compact support S_{μ} is finite and continuous as a function on the support S_{μ} , then it is continuous in Ω , where the potential U^{μ} is defined by

$$U^{\mu}(P) = \int \varPhi(P, Q) d\mu(Q).$$

It is known that every potential U^{μ} of a positive measure with compact support is quasi-continuous in Ω , that is, for any positive number ε , there is an open set G_{ε} such that $\operatorname{cap}(G_{\varepsilon}) \leq \varepsilon$ and U^{μ} is finite and continuous as a function on $\Omega - G_{\varepsilon}$. This is called an "in the large" continuity theorem. In this note we communicate an "in the small" continuity

Theorem. Let μ be a positive measure with compact support. Then at any point P except at most at the points of a polar set, there exists an open set G(P), thin at P, such that the restriction of U^{μ} to $\Omega - G(P)$ is finite and continuous at P.

This theorem was proved by Deny [3] in the case of the Newtonian potentials in the *m*-dimensional Euclidean space. Recently Smith [6] has remarked that this is valid for the potentials of order α , $0 < \alpha < m$.

1. Capacities. A set $E \subset \Omega$ is called a *polar set* if it is contained in some $I_{\mu} = \{P: U^{\mu}(P) = +\infty\}$, where μ is a positive measure of total measure finite. We denote by \mathfrak{P} the family of all polar sets. For any set X we put

$$\mathfrak{F}_{X} = \{\mu \geq 0; \ \mu(\Omega) < +\infty, \ U^{\mu} \geq 1 \text{ on } X \text{ except } E \in \mathfrak{P}\}, \ f(X) = egin{cases} \inf_{\mu \in \mathfrak{F}_{X}} \mu(\Omega) \\ +\infty & \text{if } \mathfrak{F}_{X} \text{ is empty,} \end{cases}$$