17. Note on Finite Semigroups which Satisfy Certain Group-like Condition

By Takayuki Tamura
Mathematical Institute of Tokushima University
(Comm. by K. Shoda, m.J.A., Feb. 12, 1960)

§1. Introduction. In this note we shall report promptly some results about \mathfrak{S}-semigroups and \mathfrak{J}-semigroups without proof. The propositions will be precisely discussed in another papers [3, 4].

A finite semigroup S is said to have \subseteq-property if S of order n contains no proper subsemigroup of order greater than $n / 2$. We mean by a decomposition of S a classification of the elements into some classes due to a congruence relation. A decomposition is called homogeneous if each class is composed of equal number of elements. If every decomposition of a finite semigroup S is homogeneous, we say S has \mathfrak{g} property, or S is called a \mathfrak{J}-semigroup.

According to Rees [1], if a finite semigroup S is simple, it is represented as a regular matrix semigroup with a ground group G and with a defining matrix $P=\left(p_{j i}\right)$ of type (l, m), namely
either

$$
\begin{array}{ll}
\text { either } & S=\{(x ; i j) \mid x \in G, i=1, \cdots, m ; j=1, \cdots, l\} \\
\text { or } & S=\{(x ; i j) \mid x \in G, i=1, \cdots, m ; j=1, \cdots, l\} \smile_{\{0\}}
\end{array}
$$

in which 0 is the two-sided zero of S. The multiplication is defined as

$$
(x ; i j)(y ; s t)= \begin{cases}\left(x p_{j s} y ; i t\right) & \text { if } p_{j s} \neq 0 \\ 0 & \text { if } p_{j s}=0 \text { and hence } S \text { has } 0 .\end{cases}
$$

Let $M=\{1, \cdots, m\}, L=\{1, \cdots, l\} . \quad M$ and L are regarded as a rightsingular semigroup and a left-singular semigroup respectively. For the sake of convenience, the notations

$$
\operatorname{Simp} .(G ; P) \quad \text { and } \quad \operatorname{Simp} .(G, 0 ; P)
$$

denote simple semigroups S with a ground group G and with a defining matrix P. The former is one without zero, whence $p_{j i} \neq 0$ for all i, j, but the latter denotes one with zero 0 , so that if $p_{j i} \neq 0$ for all i and j, S contains no zero-divisor.
$\S 2$. S-semigroups. The following \mathbb{S}_{1}-property is stronger than §-property, i.e. \Im_{1}-property implies $\mathfrak{S}^{\text {-property. }}$

A finite semigroup S is said to have \mathfrak{S}_{1}-property if the order of any subsemigroup is a divisor of the order of S.

Let e be a unit of a finite group G.
Lemma 2.1. Simp. $\left(G ;\binom{e}{e}\right)$ is an \mathfrak{S}_{1}-semigroup.
Lemma 2.1'. Simp. (G; (e e)) is an \mathfrak{S}_{1}-semigroup.

