53. A Characterization of Holomorphically Complete Spaces

By Ryôsuke Iwahashi
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., April 12, 1960)

Given a connected complex space X, we denote by $A(X)$ the C algebra of holomorphic functions on X. A C-homomorphism of $A(X)$ into C which preserves the constants is called a character of $A(X)$. Let X^{*} be the set of all characters of $A(X)$. The functions of $A(X)$ can be considered as functions on X^{*}. We shall consider X^{*} as a topological space: the open sets of X^{*} are those which can be represented as unions of sets of the form $f_{1}^{-1}\left(U_{1}\right) \frown \cdots \frown f_{k}^{-1}\left(U_{k}\right)$, where f_{1}, \cdots, f_{k} are in $A(X)$, while U_{1}, \cdots, U_{k} are open subsets of $C\left(f^{-1}(U)\right.$ denotes the set of characters χ such that $\chi f \in U$). The space X^{*} is a Hausdorff space. We assign to each $x \in X$ a point $\theta(x)$ of X^{*} which is defined by $\theta(x) f=f(x)$ for every $f \in A(X)$. The mapping $\theta: X \rightarrow X^{*}$ is continuous.

Theorem. Let X be a connected complex space. Then X is holomorphically complete if and only if $\theta: X \rightarrow X^{*}$ is a homeomorphism.

For holomorphically complete spaces, see H. Cartan [1] and H. Grauert [2].

Proof. Suppose that X is holomorphically complete. Since X is holomorphically separable [2], the mapping θ is injective. Let χ be a point of X^{*}. We denote by M the maximal ideal Ker χ. Take $f_{1} \neq 0$ in M and decompose the analytic set $V^{(1)}=\left\{x \in X \mid f_{1}(x)=0\right\}$ of dimension $n-1$ (X being of dimension n) into irreducible components $V_{i}^{(1)}$. The family ($V_{i}^{(1)}$) being locally finite, we can find two points x_{i}, x_{i}^{\prime} in $V_{i}^{(1)}$ for each i such that all the points are distinct and form an analytic set, of dimension 0 , in X. By Theorem B on holomorphically complete spaces [1], we can find a function f in $A(X)$ such that $f\left(x_{i}\right)=0$ and $f\left(x_{i}^{\prime}\right)=1$ for every i. Let $f_{2}=f-\chi f$. Then $f_{2} \in M$ is not identically zero on each $V_{i}^{(1)}$. Decompose the analytic set $V^{(2)}=\left\{x \in X \mid f_{1}(x)=f_{2}(x)=0\right\}$ of dimension $n-2$ into irreducible components and find $f_{3} \in M$ as before. The repetition of such processes leads to the analytic set $V^{(n)}=\{x \in X \mid$ $\left.f_{1}(x)=\cdots=f_{n}(x)=0\right\}$ of dimension 0 in X, where $f_{1}, \cdots, f_{n} \in M$. Applying Theorem B again, we can find a function $f \in A(X)$ which takes different values at distinct points of $V^{(n)}$. Let $f_{n+1}=f-\chi f$. By Theorem A [1] we know that any finite subset of $A(X)$ without common zero generates $A(X)$ over itself. Therefore the functions f_{1}, \cdots, f_{n+1} have at least one, and so only one, common zero, say x. For any $f \in M$, then functions $f_{1}, \cdots, f_{n+1}, f$ have the common zero x and so $f(x)=0$, that is, $f \in \operatorname{Ker} \theta(x)$.

