53. A Characterization of Holomorphically Complete Spaces

By Ryôsuke Iwahashi

Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., April 12, 1960)

Given a connected complex space X, we denote by A(X) the Calgebra of holomorphic functions on X. A C-homomorphism of A(X)into C which preserves the constants is called a *character* of A(X). Let X^* be the set of all characters of A(X). The functions of A(X)can be considered as functions on X^* . We shall consider X^* as a topological space: the open sets of X^* are those which can be represented as unions of sets of the form $f_1^{-1}(U_1) \frown \cdots \frown f_k^{-1}(U_k)$, where f_1, \cdots, f_k are in A(X), while U_1, \cdots, U_k are open subsets of C ($f^{-1}(U)$ denotes the set of characters χ such that $\chi f \in U$). The space X^* is a Hausdorff space. We assign to each $x \in X$ a point $\theta(x)$ of X^* which is defined by $\theta(x)f = f(x)$ for every $f \in A(X)$. The mapping $\theta: X \to X^*$ is continuous.

Theorem. Let X be a connected complex space. Then X is holomorphically complete if and only if $\theta: X \to X^*$ is a homeomorphism.

For holomorphically complete spaces, see H. Cartan [1] and H. Grauert [2].

Proof. Suppose that X is holomorphically complete. Since X is holomorphically separable [2], the mapping θ is injective. Let χ be a point of X^{*}. We denote by M the maximal ideal Ker χ . Take $f_1 \neq 0$ in M and decompose the analytic set $V^{(1)} = \{x \in X \mid f_1(x) = 0\}$ of dimension n-1 (X being of dimension n) into irreducible components $V_i^{(1)}$. The family $(V_i^{(1)})$ being locally finite, we can find two points x_i, x'_i in $V_i^{(1)}$ for each i such that all the points are distinct and form an analytic set, of dimension 0, in X. By Theorem B on holomorphically complete spaces [1], we can find a function f in A(X) such that $f(x_i)=0$ and $f(x_i)=1$ for every i. Let $f_2=f-\chi f$. Then $f_2 \in M$ is not identically zero on each $V_i^{(1)}$. Decompose the analytic set $V^{(2)} = \{x \in X \mid f_1(x) = f_2(x) = 0\}$ of dimension n-2 into irreducible components and find $f_3 \in M$ as before. The repetition of such processes leads to the analytic set $V^{(n)} = \{x \in X\}$ $f_1(x) = \cdots = f_n(x) = 0$ of dimension 0 in X, where $f_1, \cdots, f_n \in M$. Applying Theorem B again, we can find a function $f \in A(X)$ which takes different values at distinct points of $V^{(n)}$. Let $f_{n+1}=f-\chi f$. By Theorem A [1] we know that any finite subset of A(X) without common zero generates A(X) over itself. Therefore the functions f_1, \dots, f_{n+1} have at least one, and so only one, common zero, say x. For any $f \in M$, then functions f_1, \dots, f_{n+1}, f have the common zero x and so f(x) = 0, that is, $f \in \text{Ker } \theta(x)$.