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(Comm. by K. KUNUGI, M.J.A., April 12, 1960)

In the following we assume that spaces considered here are always
completely regular and continuous functions are real-valued one. Let
X*=X--X. We shall say that X has a dual space X* if there is
a homeomorphism of fl(X*) onto fiX which keeps X* pointwisely fixed.)

Then we write X** (X*)* (= fl(X*) X*) X or fiX= (X*). This
notations may be justified by the properties A), B) and C) in 1. A
subset B of X is said to be inessential to X if any bounded continuous
function defined on X--B is continuously extended over X. In 2 we
shall show that if X has a dual space, then every compact subset of
X is inessential to X and every finite subset of/X is inessential to fiX.
Using this results, we shall prove that X has a dual space if and only
if every proper open subset of X whose complement is compact has
a dual space.) We have given in [3 a stonean space with a dual
space. In 3, we shall give examples of spaces with dual spaces among
spaces of the following types: i) pseudo-compact spaces, ii) countably
compact, X-product spaces, iii) countably compact, non-paracompact,
normal spaces which have a uniform structure by the family of neigh-
borhoods of the diagonal of product with itself, and iv)countably com-
pact, non-normal spaces.

1. The proofs of the following properties are obvious.

A) Let Z and X be given spaces and let Y be a dense subset of
Z. If two homeomorphisms and @ from Z onto X coincide with each
other on Y, then (z)=@(z) for every z eZ.

Let ? be a homeoraorphisra from fl(X*) onto fiX which keeps X*
pointwisely fixed.

B) If X has a dual space X*, then every bounded continuous
function f* on X* has a continuous extension f=Fo- over fix where
F is a continuous extension of f* over (X*).

C) In B), let g be a bounded continuous function on X and g* be

1) The definition, in [3J, of a dual space (the first row of p. 148 and the last row
of p. 160) seems to be ambiguous, but the progression of arguments, in [3J, with re-
spect to a dual space was set in the sense of this paper.

2) This characterization may be of interest in view of the fact that the following
conditions are equivalent for any X: i) X is a stonean space with a dual space, ii) any
proper open subspace U of X has a dual space and X-U is inessential to X, and iii)
any proper dense subspace of X has a dual space. This fact is essentially proved in
[3, Th. 12] (but with an inexact statement).


