48. On Quasi-normed Spaces. III

By Tomoko Konda

(Comm. by K. KUNUGI, M.J.A., April 12, 1960)

In this paper, we consider the inverse of a linear transformation of a (QN) space into a (QN) space. Here, we consider a linear transformation T whose domain is a (QN) space E with the power r $(0 < r \le 1)$ and range is a (QN) space F with the power s $(0 < s \le 1)$, see [2], [3] or [4].

If a linear transformation T is one-to-one, then T has the inverse transformation T^{-1} of F onto E.

Theorem 1. A linear transformation T has a bounded inverse if and only if there exists a positive number m such that $||T(x)||_s$ $\geq m ||x||_x^{\frac{s}{2}}$ for all $x \in E$.

Proof. Suppose that T has a bounded inverse T^{-1} , then there exists M such that $||T^{-1}(y)||_r \leq M ||y||_s^{\frac{r}{s}}$, and there exists $x \in E$ such that y = T(x). Therefore,

$$|| T^{-1}(T(x)) ||_{r} \leq M || T(x) ||_{s}^{\frac{1}{s}},$$
$$|| x ||_{r} \leq M || T(x) ||_{s}^{\frac{r}{s}}$$

and

$$||x||_r^{\frac{s}{r}} \leq M^{\frac{s}{r}} ||T(x)||_s.$$

Let $M^{\frac{s}{r}} = m^{-1}$, then we have $m ||x||_{r}^{\frac{s}{r}} \le ||T(x)||_{s}$.

To prove the inverse, let $||T(x)||_s = 0$, then T(x) = 0 and x = 0. On the other hand x=0 implies $m ||x||_r^{\frac{s}{r}} = 0$. Therefore T is one-to-one and has the inverse T^{-1} of T.

In Theorem 1, we can take m as the norm $||T||_s$ of the transformation, i.e. $||T(x)||_s \ge ||T||_s ||x||_r^{\frac{s}{r}}$. Consequently, the norm of inverse transformation is defined by $||T^{-1}||_r = ||T||_s^{-\frac{r}{s}}$, hence we have $||T^{-1}||_r = ||T||_s^{-r}$.

Now, we shall show that a well-known Banach theorem on inverse transformation is also true for the case of (QN) spaces. First, we shall prove Lemmata.

Lemma 1. Let T be a bounded linear transformation of E into F. If the image under T of the unit sphere S_1 in E is dense in some sphere U_r about the origin of F, then $T(S_1)$ includes U_r .

Proof. By the assumption, the set $A = U_r \cap T(S_1)$ is dense in U_r . Let y be any point of U_r . For any $\delta > 0$, we take $y_0 = 0$ and choose inductively a sequence $y_n \in F$ such that $y_{n+1} - y_n \in \delta^n A$ and $||y_{n+1} - y_n||$