# 99. A Note on Subdirect Decompositions of Idempotent Semigroups 

By Miyuki Yamada<br>Shimane University<br>(Comm. by K. Kunugi, m.J.A., July 12, 1960)

A subsemigroup $B$ of the direct product $B_{1} \times B_{2} \times \cdots \times B_{n}$ of bands (i.e. idempotent semigroups) $B_{1}, B_{2}, \cdots, B_{n}$ is called a subdirect product of $B_{1}, B_{2}, \cdots, B_{n}$ if every $i$,

$$
\xi_{i}(B)=B_{i}
$$

where $\xi_{i}$ is the $i$-th projection of $B_{1} \times B_{2} \times \cdots \times B_{n}$.
Let $\Re_{1}, \Re_{2}, \cdots, \Re_{m}$ be congruences on a band $S$. Then the set $S^{*}=\left\{\left(\varphi_{1}(a), \varphi_{2}(a), \cdots, \varphi_{m}(a)\right): a \in S\right\}$, where each $\varphi_{i}$ is the natural homomorphism of $S$ to $S / \Re_{i}$, becomes a subdirect product of $S / \Re_{1}, S / \Re_{2}, \cdots$, $S / \Re_{m}$. Such $S^{*}$ is called the natural representation of $S$ induced by $\Re_{1}, \Re_{2}, \cdots, \Re_{m}$, and denoted by $S / \Re_{1} \circ S / \Re_{2} \circ \ldots \circ S / \Re_{m}$. Especially, it has been shown by Birkhoff [1] that if $\Re_{1} \cap \Re_{2} \cap \cdots \bigcap \Re_{m}=0,{ }^{1)}$ then $S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{m}$ is an isomorphic representation of $S$.

Another important type of subdirect product, which is often used in the study of bands, is spined product introduced by Kimura [2]:

Let $S_{1}, S_{2}, \cdots, S_{n}$ be bands having $\Gamma$ as their structure semilattices. And let $\mathscr{D}_{i}: S_{i} \sim \Sigma\left\{S_{i}^{r}: \gamma \in \Gamma\right\}$, for each $i$ with $1 \leqq i \leqq n$, be the structure decomposition of $S_{i}{ }^{2)} \quad$ Then, the set $S=\bigcup\left\{S_{1}^{r} \times S_{2}^{r} \times \cdots \times S_{n}^{r}: \gamma \in \Gamma\right\}$ becomes a subdirect product of $S_{1}, S_{2}, \cdots, S_{n}$. Such $S$ is called the spined product of $S_{1}, S_{2}, \cdots, S_{n}$ with respect to $\Gamma$, and denoted by $S_{1} \bowtie S_{2} \bowtie$ $\cdots \bowtie S_{n}(\Gamma)$.

The main purpose of this paper is to present the following representation theorem which clarifies the relation between such two special kinds of subdirect product.

Theorem. Let $S$ be a band, and $\mathfrak{D}: S \sim \Sigma\left\{S_{r}: \gamma \in I^{\prime}\right\}$ its structure decomposition. Let $\Re_{1}, \Re_{2}, \cdots, \Re_{n}, n \geqq \mathbf{2}$, be congruences on $S$.

If $\Re_{1}, \Re_{2}, \cdots, \Re_{n}$ satisfy

[^0]
[^0]:    1) The ordering in the set $\Omega$ of all congruences on $S$ is as follows: For $\mathfrak{X}, \mathfrak{B} \in \Omega$, $\mathfrak{A} \leqq \mathfrak{B}$ if and only if for $x, y \in S x \mathfrak{A} y$ implies $x \mathfrak{B} y$. The element 0 will denote the least element of $\Omega$ in the sense of this ordering.
    2) Let $S$ be a band. Then, there exist a semilattice $\Gamma$ and a disjoint family of rectangular subsemigroups of $S$ indexed by $\Gamma,\left\{S_{r}: r \in \Gamma\right\}$, such that

    $$
    \begin{array}{ll} 
    & S=\cup\left\{S_{\gamma}: \gamma \in \Gamma\right\} \\
    \text { and } \quad & S_{\alpha} S_{\beta} \subset S_{\alpha \beta} \quad \text { for } \alpha, \beta \in \Gamma
    \end{array}
    $$

    (see McLean [3]). In this case $\Gamma$ is determined uniquely up to isomorphism, and called the structure semilattice of $S$. Further this decomposition, say $\mathfrak{D}$, gives a congruence called the structure decomposition of $S$ and denoted by $S \sim \Sigma\left\{S_{\gamma}: \gamma \in \Gamma\right\}$.

