99. A Note on Subdirect Decompositions of Idempotent Semigroups

By Miyuki YAMADA

Shimane University (Comm. by K. KUNUGI, M.J.A., July 12, 1960)

A subsemigroup B of the direct product $B_1 \times B_2 \times \cdots \times B_n$ of bands (i.e. idempotent semigroups) B_1, B_2, \cdots, B_n is called a *subdirect prod*uct of B_1, B_2, \cdots, B_n if every i,

$$\xi_i(B) = B_i$$

where ξ_i is the *i*-th projection of $B_1 \times B_2 \times \cdots \times B_n$.

Let $\Re_1, \Re_2, \dots, \Re_m$ be congruences on a band S. Then the set $S^* = \{(\varphi_1(a), \varphi_2(a), \dots, \varphi_m(a)): a \in S\}$, where each φ_i is the natural homomorphism of S to S/\Re_i , becomes a subdirect product of $S/\Re_1, S/\Re_2, \dots, S/\Re_m$. Such S^* is called the *natural representation* of S induced by $\Re_1, \Re_2, \dots, \Re_m$, and denoted by $S/\Re_1 \circ S/\Re_2 \circ \dots \circ S/\Re_m$. Especially, it has been shown by Birkhoff [1] that if $\Re_1 \cap \Re_2 \cap \dots \cap \Re_m = 0$,¹⁾ then $S/\Re_1 \circ S/\Re_2 \circ \dots \circ S/\Re_m$ is an isomorphic representation of S.

Another important type of subdirect product, which is often used in the study of bands, is *spined product* introduced by Kimura [2]:

Let S_1, S_2, \dots, S_n be bands having Γ as their structure semilattices. And let $\mathfrak{D}_i: S_i \sim \Sigma\{S_i^{\gamma}: \gamma \in \Gamma\}$, for each i with $1 \leq i \leq n$, be the structure decomposition of $S_i^{2^{\circ}}$. Then, the set $S = \bigcup\{S_1^{\gamma} \times S_2^{\gamma} \times \dots \times S_n^{\gamma}: \gamma \in \Gamma\}$ becomes a subdirect product of S_1, S_2, \dots, S_n . Such S is called the spined product of S_1, S_2, \dots, S_n with respect to Γ , and denoted by $S_1 \bowtie S_2 \bowtie \dots \bowtie S_n(\Gamma)$.

The main purpose of this paper is to present the following representation theorem which clarifies the relation between such two special kinds of subdirect product.

Theorem. Let S be a band, and $\mathfrak{D}: S \sim \Sigma\{S_{\gamma}: \gamma \in I'\}$ its structure decomposition. Let $\mathfrak{R}_1, \mathfrak{R}_2, \dots, \mathfrak{R}_n, n \geq 2$, be congruences on S.

If $\Re_1, \Re_2, \cdots, \Re_n$ satisfy

2) Let S be a band. Then, there exist a semilattice Γ and a disjoint family of rectangular subsemigroups of S indexed by Γ , $\{S_r: r \in \Gamma\}$, such that

$$S = \cup \{ S_{\gamma} \colon \gamma \in \Gamma \}$$

and $S_{\alpha}S_{\beta}\subset S_{\alpha\beta}$ for $\alpha,\beta\in\Gamma$

(see McLean [3]). In this case Γ is determined uniquely up to isomorphism, and called the structure semilattice of S. Further this decomposition, say D, gives a congruence called the structure decomposition of S and denoted by $S \sim \Sigma\{S_r : r \in \Gamma\}$.

¹⁾ The ordering in the set Ω of all congruences on S is as follows: For $\mathfrak{A}, \mathfrak{B} \in \Omega$, $\mathfrak{A} \leq \mathfrak{B}$ if and only if for $x, y \in S \ x \mathfrak{A} \ y$ implies $x \mathfrak{B} \ y$. The element 0 will denote the least element of Ω in the sense of this ordering.