117. On the Maximum Principles of Second Order Elliptic Differential Equations

By Kiyoshi Akô

Department of Mathematics, University of Tokyo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1960)

The aim of this note is to extend the well-known maximum principle of E. Hopf¹⁾ concerning the general second order elliptic differential equation

(1) $F(x, u, u_k, u_{ij}) = 0,^{2}$

where $u_i = \partial u / \partial x_i$, $u_{ij} = \partial^2 u / \partial x_i \partial x_j$.

In this note we shall derive two kinds of the maximum principles under the following

Assumptions. I. The function $F(x, u, p_k, r_{ij})$ is defined in the domain $\mathfrak{D}: x \in G, |u|, |p_k|, |r_{ij}| < \infty$, where G is any domain in the Euclidean *n*-space.

II. $F(x, u, p_k, r_{ij})$ is continuously differentiable with respect to the arguments r_{ij} provided that the other arguments x, u, p_k remain fixed. Moreover, for every compact subset \mathfrak{A} of \mathfrak{D} there exists a constant A > 0 such that

$$A^{-1}|\xi|^2 \leq \sum_{i,j=1}^n rac{\partial F}{\partial r_{ij}} \xi_i \xi_j \leq A |\xi|^2$$

for any $(x, u, p_i, r_{ij}) \in \mathfrak{A}$, and for any *n*-tuple $\xi = (\xi_1, \dots, \xi_n)$.

III. $F(x, u, p_k, r_{ij})$ satisfies the Lipschitz condition with respect to the arguments u, p_i, r_{ij} in every compact subset of the domain \mathfrak{D} .

THEOREM I. Let $u^{(1)}(x)$ and $u^{(2)}(x)$ be two $C^2(G)$ -functions which satisfy the differential inequalities

(2) $F(x, u^{(1)}, u^{(1)}_k, u^{(1)}_{ij}) \leq 0$

and (3) $F(x, u^{(2)}, u^{(2)}_{k}, u^{(2)}_{ij}) \ge 0$

in the domain G respectively. We assume further that $u^{(2)}(x) \leq u^{(1)}(x)$ in the domain G. Then we have the following alternative:

Either $u^{(2)}(x) \equiv u^{(1)}(x)$ in the domain G, or $u^{(2)}(x) < u^{(1)}(x)$ throughout in G.

Proof. The proof will be carried out by reducing the theorem to the less general lemma.

LEMMA. If the function F is of the form

¹⁾ E. Hopf: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsberichte Preuss. Akad. Wiss., **19**, 147–152 (1927).

²⁾ We denote by x the point (x_1, \dots, x_n) of the Euclidean *n*-space.