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1. Introduction. The main object of the present note is to
establish the following theorem, which will answer in the affirmative
to the cosine problem proposed by S. Chowla in connexion with a
question concerning zeta functions (cf. 1):

Theorem 1. Let K be an arbitrary positive number. Then there
exists a natural number no--no(K) such that for any n>no and any
set of n distinct positive integers ml, m.,..., m we have

min (cos mx+cos m.x+... +cos mx)< --K.
0x<2

Here we may take
( 1 no(K)--max (2
which is, of course, not the best possible.

As a simple generalization of Theorem 1 we can prove also that,
given a real number K>0, there is an no=no(K) such that for any
n>no and any set of n distinct positive integers m, m.,..., m, we
have

min , cos (mx+%.)< --K,
where a,,, 2,’", are arbitrary real numbers, and in particular,

rain sin mx< --K, max sin mx>K.
Thus Theorem 1 is a special case of the following
Theorem 2. Let G be a locally compact connected abelian group.

Given a real number K>0, we can find an no--no(K) such that )’or
any n>no and any set of n distinct characters Zl(x), Z.(x),..., Zn(x)
on G we have

inf Re , cz(m)< K,
where c,c.,...,c, are arbitrary complex numbers with [cj[>l (13"
<=n).

For instance, if 2,2.,...,2 are arbitrary distinct positive real
numbers, where nno, then we have

inf (cos 2x+cos 2.x+... +cos 2x)< --K.
real

2. Some lemmas. In order to prove the theorems we appeal to
a technique by P. J. Cohen 2J developed in the investigation of a
different problem, and so, to avoid ambiguity, we shall here reproduce
some of his lemmas given in [2 with a slight modification.


