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1. Introduction. The main object of the present note is to
establish the following theorem, which will answer in the affirmative
to the cosine problem proposed by S. Chowla in connexion with a
question concerning zeta functions (ef. [1]):

Theorem 1. Let K be an arbitrary positive number. Then there
exists a natural number ny,=mnK) such that for any n=mn, and any
set of m distinct positive integers m,, m,,- - -, m, we have

min (cos m,x+cos Mmyx+ - - - +cos m,x) < — K,
0s2<27m

Here we may take
(1) ny(K)=max (2%, [8K*]*r#0x*),
which is, of course, not the best possible.

As a simple generalization of Theorem 1 we can prove also that,
given a real number K >0, there is an n,=n4(K) such that for any
n=mn, and any set of n» distinct positive integers m,, ms,---, m, we
have

min i cos (mx+w;)<—K,
0sx<2x j=1
where w;, @y, +, @, are arbitrary real numbers, and in particular,

n n
min > sinma<—K, max > sinmx>K.
0sSz<2r j=1 =<2 j=1

Thus Theorem 1 is a special case of the following
Theorem 2. Let G be a locally compact connected abelian group.
Given a real number K>0, we can find an n,=n,K) such that for

any n=mn, and any set of n distinct characters y,(x), x(x),- - -, x.(2)
on G we have

inf Re i e, @) < —K,
win =
where ¢y, ¢y« -, ¢, are arbitrary complex numbers with |c¢;|=1 1=j
<m).
For instance, if 2, 4,,---, 4, are arbitrary distinct positive real
numbers, where n=n, then we have
mi?efl (cos 2,2+ cos A,x+ - - - +cos 2,4) < — K.

2. Some lemmas. In order to prove the theorems we appeal to
a technique by P. J. Cohen [2] developed in the investigation of a
different problem, and so, to avoid ambiguity, we shall here reproduce
some of his lemmas given in [2] with a slight modification.



