8. A Remark on Regular Semigroups

By S. Lajos
L. Eötvös University, Budapest, Hungary
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1961)

A semigroup is a non-empty set which is closed with respect to an associative binary multiplication. A left ideal L of S is a nonempty subset of S such that $S L \subset L$. A right ideal R of S is a non-empty subset of S such that $R S \subset R$. A two-sided ideal or ideal of S is a subset which is both a left and a right ideal. If a is an element of the semigroup S, (a) denotes the smallest left ideal of S containing a. A left ideal L of S is called principal if and only if $L=(a)_{L}$ for some a in S. Similarly we can define principal right ideal $(a)_{R}$ and principal two-sided ideal (a).

The concept of regular ring was introduced by J. von Neumann [5] as follows: an arbitrary (associative) ring A is called regular if to any element a of A there exists an x in A such that $a x a=a$. The concept of regular semigroup is defined analogously (see e.g. [1]). L. Kovács [3] characterized the regular rings as rings satisfying the property:

$$
R \cap L=R L
$$

for every right ideal R and every left ideal L of A. K. Iséki [2] extended this characterization to semigroups. In this connection we prove the following

Theorem 1. To any semigroup S the following conditions are equivalent:

1) S is regular,
2) $R \cap L=R L$, for every right ideal R and every left ideal L of S,
3) $(a)_{R} \cap(b)_{L}=(a)_{R}(b)_{L}$, for every pair of elements a, b in S,
4) $(a)_{R} \cap(a)_{L}=(a)_{R}(a)_{L}$, for every element a of S.

Following J. A. Green [1] we shall say that an element a of a semigroup S is regular if and only if there exists $x \in S$ so that $a x a=a$. First we prove that an element a of a semigroup S is regular if and only if the condition 4) of Theorem 1 holds. Let a be regular. Then by Lemma 3 of [4], $(a)_{L}=(e)_{L}$ and $(a)_{R}=(f)_{R}$, where e, f are idempotent elements. Let u be an element of $(a)_{R} \bigcap(a)_{L}=f S \cap S e$. Then $u=f s=s^{\prime} e$. This implies that $u=f u=f s^{\prime} e=f f s^{\prime} e \in(f S)(S e)=(a)_{R} \cdot(a)_{L}$, therefore

$$
(a)_{R} \cap(a)_{L} \subseteq(a)_{R}(a)_{L}
$$

The converse is trivial, that is the condition 4) holds.
Conversely, let us suppose that condition 4) holds. Clearly

