34. A Certain Type of Vector Field. II

By Toshiyuki Maebashi
Department of Mathematics, Hokkaido University
(Comm. by K. Kunugi, m.J.A., March 13, 1961)

All the notations of the previous paper [2] are included in the present paper.
I. Let C be a circle and let π be a symmetry, i.e. an idempotent isometry (\neq the identity) leaving $O \in C$ fixed. Now consider an imbedding I of C into a 2-dimensional Euclid subspace E_{2} of an n-dimensional Euclid space E_{n}. If O^{\prime} is the other fixed point of π, denote by G the totality of Euclid motions g of E_{n} leaving both of $I(O)$ and $I\left(O^{\prime}\right)$ fixed. Then the orbit S by G of $I(C)$ is referred to as a compact space of rotation, if π keeps the curvature of the curve $I(C)$ invariant. Given a function $f(s)$ on C with $f \circ \pi(s)=f(s)$, we can extend it to one defined on the whole S in this way: Let $x \in S$ and $x=g(I(s))$ for $g \in G$ and $s \in C$. Then we set $f(s)=f(x)$. It is easy to see that $f(x)$ is well-defined.

Let $f_{1}(s)$ be such a function that $d f_{1} \neq 0$ except at O and O^{\prime} and the above condition $f_{1} \circ \pi=f_{1}$ hold. Then as is easily seen, the dual vector V_{1} of $\operatorname{Grad}\left[f_{1}(x)\right]$ satisfies 2) and 3) of Theorem A. Furthermore for s such that $V_{1}(I(s))$ is not proportional to $V_{1}(I \circ \pi(s))$, the vector field V satisfies 1) also at $x=g(I(s))$ for every $g \in G$. In fact there is a function f_{2}, in the neighborhood of such s, of the nature that the end point of the vector $V_{2}{ }^{1)}$ dual to $\operatorname{Grad}\left[f_{2}(x)\right]$ remains fixed for the movement of $x \in S$ stated in the theorem. In addition, we can suppose that $f_{2}(s)$ has been chosen in such a fashion that π leaves $f_{2}(s)$ invariant and the domain of $f_{2}(s)$ is the set of all the s of the above-prescribed nature. For simplicity let us assume that the exceptional s are nowhere dense. Then V_{1} and V_{2} have the following properties respectively (we see these from Theorem A).
(1) V_{1} is a differentiable vector field defined on the whole S.
(2) The dual 1-form ω_{1} to V_{1} is closed.
(3) $A_{V_{1}} \in \mathfrak{P}^{-1}\left(\mathbb{S}^{*}\right)^{2)}$ except at $I(O)$ and $I\left(O^{\prime}\right)$.
(1*) $\quad V_{2}$ is a differentiable vector field defined on a dense open

[^0]
[^0]: 1) Take a straight-line passing through $I(O)$ to the direction of $I\left(O^{\prime}\right)$ for the a-axis and introduce an orthogonal coordinate system in E_{2}. Then we have

 $$
 \left\|V_{2}(I(s))\right\|=\sqrt{1+\left(\frac{d a}{d b}\right)^{2}} b
 $$

 where a and b are the coordinates of $I(s)$.
 2) For an exceptional s, we have $\mathfrak{B}\left(A \nabla_{1}\right)=0$ at $x=g \circ I(s)(g \in G)$.

