41. On Decomposition Theorems of the Vallée-Poussin Type in the Geometry of Parametric Curves

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Z. SUETUNA, M.J.A., April 12, 1961)

1. Introduction. This is a continuation of our recent papers [1] to [3]. At the end of [2] we stated without proof a decomposition theorem for the measure-length induced by a locally rectifiable plane curve. It is the objective of the present note to prove this theorem in a slightly generalized form (see §4) and to obtain two further decomposition theorems concerning measure-length and spheric measure-length respectively. The last theorem will be applied elsewhere to derive a noteworthy property of the curvature of continuous parametric curves.

2. Points of interjacence for a curve. It is convenient to begin with two simple definitions. Let \mathbb{R}^m be a Euclidean space of any dimension $m \ge 2$ throughout the paper. Consider in \mathbb{R}^m a parametric curve $\psi(t)$, defined and locally rectifiable on the real line \mathbb{R} . We shall term ψ interjacent at a point c of \mathbb{R} , if

 $|\psi(c-)-\psi(c+)| = |\psi(c-)-\psi(c)|+|\psi(c)-\psi(c+)|.$ Further, a locally rectifiable, unit-spheric curve $\gamma(t)$ in \mathbb{R}^m will be called *spherically interjacent* at c, if we have the angle-relation $\gamma(c-) \diamond \gamma(c+) = \gamma(c-) \diamond \gamma(c) + \gamma(c) \diamond \gamma(c+).$

We may also call c point of interjacence of ψ and point of spheric interjacence of γ , in the respective cases.

The geometric meanings of the above two notions are easily seen. For instance, when $\psi(c-) \neq \psi(c+)$, the former notion means that the point $\psi(c)$ lies on the closed segment connecting the two points $\psi(c-)$ and $\psi(c+)$. (When the latter points coincide, interjacence of ψ at c is simply equivalent to its continuity at the same point.) We leave to the reader the consideration of the spheric case.

Evidently ψ [or γ] is interjacent [or spherically interjacent] wherever it is unilaterally (i.e. right-hand or left-hand) continuous.

3. A lemma. We shall now derive a result which includes the lemma left unproved in the final section of [3].

LEMMA. Given ψ and γ as above, let S_* and Λ_* denote the measure-length induced by ψ and the spheric measure-length induced by γ , respectively. Then we have, for every point $t \in R$,

$$S_*({t}) = |\psi(t-) - \psi(t)| + |\psi(t) - \psi(t+)|,$$

$$\Lambda_*({t}) = \gamma(t-) \diamond \gamma(t) + \gamma(t) \diamond \gamma(t+).$$