41. On Decomposition Theorems of the Vallée-Poussin Type in the Geometry of Parametric Curves

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo

(Comm. by Z. Suetuna, m.J.A., April 12, 1961)

1. Introduction. This is a continuation of our recent papers [1] to [3]. At the end of [2] we stated without proof a decomposition theorem for the measure-length induced by a locally rectifiable plane curve. It is the objective of the present note to prove this theorem in a slightly generalized form (see §4) and to obtain two further decomposition theorems concerning measure-length and spheric measure-length respectively. The last theorem will be applied elsewhere to derive a noteworthy property of the curvature of continuous parametric curves.
2. Points of interjacence for a curve. It is convenient to begin with two simple definitions. Let \boldsymbol{R}^{m} be a Euclidean space of any dimension $m \geqq 2$ throughout the paper. Consider in \boldsymbol{R}^{m} a parametric curve $\psi(t)$, defined and locally rectifiable on the real line \boldsymbol{R}. We shall term ψ interjacent at a point c of \boldsymbol{R}, if

$$
|\psi(c-)-\psi(c+)|=|\psi(c-)-\psi(c)|+|\psi(c)-\psi(c+)| .
$$

Further, a locally rectifiable, unit-spheric curve $\gamma(t)$ in \boldsymbol{R}^{m} will be called spherically interjacent at c, if we have the angle-relation

$$
\gamma(c-) \diamond \gamma(c+)=\gamma(c-) \diamond \gamma(c)+\gamma(c) \diamond \gamma(c+) .
$$

We may also call c point of interjacence of ψ and point of spheric interjacence of γ, in the respective cases.

The geometric meanings of the above two notions are easily seen. For instance, when $\psi(c-) \neq \psi(c+)$, the former notion means that the point $\psi(c)$ lies on the closed segment connecting the two points $\psi(c-)$ and $\psi(c+)$. (When the latter points coincide, interjacence of ψ at c is simply equivalent to its continuity at the same point.) We leave to the reader the consideration of the spheric case.

Evidently ψ [or γ] is interjacent [or spherically interjacent] wherever it is unilaterally (i.e. right-hand or left-hand) continuous.
3. A lemma. We shall now derive a result which includes the lemma left unproved in the final section of [3].

Lemma. Given ψ and γ as above, let S_{*} and Λ_{*} denote the measure-length induced by ψ and the spheric measure-length induced by γ, respectively. Then we have, for every point $t \in R$,

$$
\begin{aligned}
& S_{*}(\{t\})=|\psi(t-)-\psi(t)|+|\psi(t)-\psi(t+)|, \\
& \Lambda_{*}(\{t\})=\gamma(t-) \diamond \gamma(t)+\gamma(t) \diamond \gamma(t+) .
\end{aligned}
$$

