57. On Two Properties of the Curvature of Continuous Parametric Curves

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. Suetuna, m.J.A.; May 13, 1961)

1. Introduction. In the present continuation of his recent papers [1] to [5] the author proceeds to establish two noteworthy properties of the curvature of continuous parametric curves. They generalize certain well-known results in classical differential geometry of curves.

Let \boldsymbol{R}^{m} be a Euclidean space of any dimension $m \geqq 2$ throughout this note. Let us consider in this space a parametric curve $\varphi(t)$ of the class C^{2}, defined and regular on the real line \boldsymbol{R}. In other words, we suppose that the coordinate-functions $x_{i}(t)$ of φ are all twice continuously differentiable ($i=1,2, \cdots, m$) and that, furthermore, the derivative of φ, given by $\varphi^{\prime}(t)=\left\langle x_{1}^{\prime}(t), \cdots, x_{m}^{\prime}(t)\right\rangle$ for all t, never vanishes. Let $s(t)$ denote a length-function for the curve φ, so that $s(t)$ increases strictly and for every closed interval $[a, b]$ the arc-length of φ over $[a, b]$ is equal to the increment $s(b)-s(a)$. We write further $\gamma(t)$ for the spheric representation of φ, given by $\gamma(t)=\left|\varphi^{\prime}(t)\right|^{-1} \varphi^{\prime}(t)$ for each t. Then everybody knows that the curvature of φ at any point t of \boldsymbol{R} is expressed by the absolute value of the s-derivative $(s) \gamma^{\prime}(t)$ of the curve γ. Indeed this is often adopted as the definition of curvature.

Now the extension of this statement to curves more general than φ considered above is the concern of our first theorem (§3). It should be noted that in our paper [4] we defined curvature in a way different from the aforesaid standard definition and that therefore the propounded extension is not a definition but a theorem requiring a regular proof. As for our second theorem (§5), we must omit the explanation of its origin owing to space limitation.
2. Direction-curves. Consider in $\boldsymbol{R}^{\boldsymbol{m}}$ a continuous light curve $\varphi(t)=\left\langle x_{1}(t), \cdots, x_{m}(t)\right\rangle$, defined on \boldsymbol{R} and locally straightenable (see [4]§2). Then φ is necessarily locally rectifiable by [1]§64. As in [4], the length and bend of φ over an interval I (of any type) will be denoted by $S(I)$ and $\Omega(I)$ respectively, and the induced measurelength and measure-bend by S_{*} and Ω_{*} respectively. Further, we shall continue using the symbol $\rho(t)$ of [4] to denote the curvature (in our sense) of φ at a point t of \boldsymbol{R}. We remark in passing that, as easily seen, the definition of bend adopted in [4] is compatible

