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In the following, we deal chiefly with the case when the inverse
images of closed continuous mappings become normal.

Theorem 5. Let f(X)=Y be a closed continuous mapping of a
topological space X onto a paracompact Hausdorff space Y. Then X
is mormal if and only if, for each point y of Y, any two disjoint
closed subsets A, B of the inverse image f '(y) can be separated by
open sets of X, that 18, there exist open sets G, H of X such that
GDOA, HOB and G~H=¢.

Proof. The “only if” part is obvious. So that we shall prove
the “if” part. Let A and B be two disjoint closed sets of X and
let G be an open set of X. Then we can see that the set {y|f '(y)
~ACG} is an open set of Y. In fact, let y, be any point such that
f Y (y,)~ACG and let V=Y — f(A~(X—@G)). Then, since f is a closed
continuous mapping, V is an open set of Y and y,eV, f(V)~4
~(X—G@)=¢. Hence fY(V)~ACG. Therefore the set {y|f '(¥)
~ACG} is an open set of Y. Now let Us={y|f (y)~ACG, f'(y)
~BCX—G}, then U, is an open set of Y. For any point y, of
Y, fY(y,)~A and f'(y,)~B are disjoint closed sets of f (y,). By
assumption, there exist two open sets G,, H, of X such that f~'(y,)
~ACG,, f(y)~BCH, and G,~H,=¢. Since G,~H,=¢, we get
H,CX—G, Hence y,cUs, Then we can see that the family of open
sets {Us| G ranges over all open sets of X} is an open covering of
Y. Since Y is paracompact Hausdorff space, there exists a locally
finite open covering {Vs|Ge®} where & is a family of open sets of

X such that VoC U, for every Ge®. Let H= gvg(f “Y(Ve)~G), then

H is an open set of X and {f'(Ve)~G|Ge®} is locally finite. Hence
H= G\:@(f ‘1(VG)AG)CG\:@(f “I(Vg)~G). On the other hand, since f-*
(Va)~AC f (Us)~ACG, we get fY(Vg)~AC S (Ve)~GCH. Since
{F~%(Vs)| Ge®} covers X, we get ACH. On the other hand, f-%(V,)
/\B"\G-Cf'l(Ug)ABAéC(X—G)AG=¢. Then Bmﬁ:gﬁ. Hence we
have an open set X—H which contains B. Therefore A and B are
separated by open sets H and X—H, and so that X is normal. This
completes the proof.



