By Sitiro HANAI

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1961)

K. Nagami has recently obtained the following theorem:¹⁾ a completely regular T_1 -space X is compact if and only if the projection from the product space $X \times Y$ onto Y is closed for any completely regular T_1 -space Y.

In this note, with the exception of the complete regularity and the separation axiom (T_1) of X, we shall prove an analogous theorem.

Theorem. Let X be a topological space and m an infinite cardinal number. Then X is m-compact if and only if the projection from the product space $X \times Y$ onto Y is closed for any paracompact Hausdorff space Y such that each point of Y has a neighborhood basis of power $\leq m$.

Proof. As the "only if" part has been shown in our previous note,²⁾ we need only prove the "if" part. If we suppose that X is not m-compact, then there exists a collection of closed subsets $\mathfrak{F} = \{F_{\lambda} \mid \lambda \in \Lambda\}$ with the finite intersection property such that

(1) $|\Lambda| \leq m$ where $|\Lambda|$ denotes the power of Λ .

 $(2) \quad \bigcap_{\substack{\lambda \in A}} F_{\lambda} = \phi.$

Moreover, by adding to \mathfrak{F} all the intersections of finitely many sets of \mathfrak{F} , we can assume that \mathfrak{F} satisfies the following condition (3), because $|\Lambda|$ does not exceed m.

(3) $F_{\lambda} \frown F_{\mu} \in \mathfrak{F}$ for any two sets F_{λ} , F_{μ} of \mathfrak{F} .

We define the partial order in such a way that $\lambda \ge \mu$ if and only if $F_{\lambda} \subset F_{\mu}$. Then Λ is a directed set by the condition (3).

Let Y denote the set of different elements $\{y_{\lambda} | \lambda \in \Lambda\} \smile y_{\infty}$, where $\infty \neq \lambda$ for every $\lambda \in \Lambda$. We next define the topology of Y such that (4) the neighborhood basis of each point y_{λ} is the single point set $\{y_{\lambda}\}$,

(5) the neighborhood basis of the point y_{∞} is the family of sets $U_{\lambda}(y_{\infty}) = \{y_{\mu} \mid \mu \geq \lambda\} \subseteq y_{\infty}$.

Then, since Λ is a directed set, Y is a topological space. It is evident that each point of Y has a neighborhood basis of power $\leq m$. We next prove that Y is a Hausdorff space. Since $\{y_i\} \frown \{y_{\mu}\} = \phi$

¹⁾ K. Nagami communicated to me this interesting theorem in his kind letter of August 8, 1961.

²⁾ S. Hanai: Inverse images of closed mappings. I, Proc. Japan Acad., 37, 298-301 (1961).