133. Some Analytical Properties of the Spectra of Normal Operators in Hilbert Spaces

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by K. KUNUGI, M.J.A., Nov. 13, 1961)

Definition. Let \mathfrak{H} be the complex abstract Hilbert space which is complete, separable and infinite dimensional; and let N_j , $j=1, 2, \cdots$, p, be bounded normal operators in \mathfrak{H} . We then define a complexvalued function $S(f, g; \lambda)$ of a complex variable λ by

 $S(f, g; \lambda) = \left(\left(\sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} c_{\alpha j} (\lambda I - N_j)^{-\alpha} \right) f, g \right), \ \left(f \in \bigcap_{j=1}^{p} \mathfrak{D}((\lambda I - N_j)^{-m_j}), \ g \in \mathfrak{H} \right),$ under the assumption that the set of accumulation points of the point spectrum of each N_j is an at most denumerably infinite set.

Though f here is arbitrarily chosen in the domain $\bigcap_{j=1}^{p} \mathfrak{D}((\lambda I - N_j)^{-m_j})$ so that the function S is significant, the domains of f in the results of integrations of S along such curves as will afterwards be defined are extended respectively: because the respective integrals of $\sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} c_{\alpha_j}(\lambda I - N_j)^{-\alpha}$ are reduced to simplified operators as we shall see later on.

As will afterwards be verified immediately from the integral expressions and the expansions of $N_j, j=1, 2, \dots, p$, the following statements are valid:

1° $S(f, g; \lambda)$ is regular in the intersection of all resolvent sets of $N_j, j=1, 2, \cdots, p$, only;

2° every isolated eigenvalue of N_j , $j=1, 2, \dots, p$, is a pole with order m_j of $S(f, g; \lambda)$;

 3° though every accumulation point of isolated eigenvalues of each N_j is a non-isolated essential singularity of $S(f, g; \lambda)$ in the sense of the function theory, $S(f, g; \lambda)$ has the principal part of the expansion at that point when and only when it belongs to the point spectrum of the N_j ;

 4° every point belonging to the union of the continuous spectra of N_j , $j=1, 2, \cdots, p$, is a non-regular point of $S(f, g; \lambda)$, but not a usual singularity in the sense of the function theory unless it is an accumulation point of isolated eigenvalues of any one of N_j , $j=1, 2, \cdots, p$.

In particular, we are interested in the case where $S(f, g; \lambda)$ has a denumerably infinite set of non-isolated essential singularities. We shall discuss the integral of $S(f, g; \lambda)$ along a rectifiable closed Jordan curve comprising those denumerably infinite essential singularities