133. Some Analytical Properties of the Spectra of Normal Operators in Hilbert Spaces

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by K. Kunugi, m.J.A., Nov. 13, 1961)

Definition. Let $\mathfrak{5}$ be the complex abstract Hilbert space which is complete, separable and infinite dimensional; and let $N_{j}, j=1,2, \cdots$, p, be bounded normal operators in 5 . We then define a complexvalued function $S(f, g ; \lambda)$ of a complex variable λ by

$$
S(f, g ; \lambda)=\left(\left(\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} c_{\alpha j}\left(\lambda I-N_{j}\right)^{-\alpha}\right) f, g\right),\left(f \in \bigcap_{j=1}^{p} \mathfrak{D}\left(\left(\lambda I-N_{j}\right)^{-m_{j}}\right), g \in \mathfrak{F}\right)
$$

under the assumption that the set of accumulation points of the point spectrum of each N_{j} is an at most denumerably infinite set.

Though f here is arbitrarily chosen in the domain $\bigcap_{j=1}^{\infty} \mathfrak{D}\left(\left(\lambda I-N_{j}\right)^{-m_{j}}\right)$ so that the function S is significant, the domains of f in the results of integrations of S along such curves as will afterwards be defined are extended respectively: because the respective integrals of $\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}}$ $c_{\alpha_{j}}\left(\lambda I-N_{j}\right)^{-\alpha}$ are reduced to simplified operators as we shall see later on.

As will afterwards be verified immediately from the integral expressions and the expansions of $N_{j}, j=1,2, \cdots, p$, the following statements are valid:
$1^{\circ} S(f, g ; \lambda)$ is regular in the intersection of all resolvent sets of $N_{j}, j=1,2, \cdots, p$, only;
2° every isolated eigenvalue of $N_{j}, j=1,2, \cdots, p$, is a pole with order m_{j} of $S(f, g ; \lambda)$;
3° though every accumulation point of isolated eigenvalues of each N_{j} is a non-isolated essential singularity of $S(f, g ; \lambda)$ in the sense of the function theory, $S(f, g ; \lambda)$ has the principal part of the expansion at that point when and only when it belongs to the point spectrum of the N_{j};
4° every point belonging to the union of the continuous spectra of $N_{j}, j=1,2, \cdots, p$, is a non-regular point of $S(f, g ; \lambda)$, but not a usual singularity in the sense of the function theory unless it is an accumulation point of isolated eigenvalues of any one of $N_{j}, j=1,2, \cdots, p$.

In particular, we are interested in the case where $S(f, g ; \lambda)$ has a denumerably infinite set of non-isolated essential singularities. We shall discuss the integral of $S(f, g ; \lambda)$ along a rectifiable closed Jordan curve comprising those denumerably infinite essential singularities

