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All spaces under consideration are supposed to be completely
regular. Concepts of approximation and uniform approximation of
spaces are introduced. In Theorems 1-4 the difference between approxi-
mations and uniform approximations is shown. Finally, in Theorems
5 and 6 certain general results on approximations are stated.

Definition of approximations. Let A be a class of spaces. A
space X is approximated by A in Y if XY and for every x in Y
-X there exists an A in A with XAY--(x). The class of all
spaces X which are approximated by A in /(X) will be called the
closure of A and will be denoted by el (A).

Definition of uniform approximations. Let A be a class of
spaces. A space X is uniformly approximated by A in Y if XY and
for every closed (in Y) set FY--X there exists an A in A with
XAY--F. The class of all spaces X which are uniformly ap-
proximated by A in /3(X) will be called the uniform closure of A
and denoted by unif. el (A).

For convenience a class of spaces A will be called closed (uni-
formly closed) if cl (A)--A (unif. cl (A)= A). From the definitions
one can prove at once the following elementary formulae:
( 1 ) A unif. cl (A) cl (A)
(2) el (el (A))=cl (a)
( 3 ) unif. cl (unif. cl (A))=unif. cl (A)
(4) unif. cl (AAs)=unif. cl (A)unif. el (A2).

Theorem 1. The uniform closure of the class Ke of a-compact
spaces (countable unions of compact subspaces) is the class of all
Lindeliif spaces (every open covering contains a countable subcovering).

Theorem 2. The closure of the class K, is the class of all Q-
spaces (realeompaet spaces in the terminology of Gillrnan and Jerison).

The proofs of both theorems are simple and may be left to the
reader.

By a perfect mapping of X onto Y is meant a closed and continu-
ous mapping of X onto Y such that the preimages of points are
compact. One can prove the following results.

Theorems 1’ and 2’. The class K in Theorems 1 and 2 may be
replaced by each of the following classes: the class of all a-compact
locally compact spaces (=the class of all preimages under perfect


