122. Further Measure-Theoretic Results in Curve Geometry

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Nov. 13, 1961)

1. Extension of a previous result. The final theorem of our recent note [4] was only given a sketched proof. We shall now prove it completely, extending it at the same time to the following form which is slightly more general.

THEOREM. If I is an interval (of any type) on which a curve φ , situated in \mathbb{R}^m , is both continuous and rectifiable, then $\Xi(\varphi; E) = \Gamma(\varphi; E)$ for any subset E of I whatsoever.

PROOF. We may clearly suppose I an endless interval, so that φ is continuous at all points of I. Let us denote by \Re the class of all the Borel sets $X \subset I$ fulfilling the relation $E(\varphi; X) = \Gamma(\varphi; X)$, and by \mathfrak{M} the class of all convex subsets of *I*. Each set (\mathfrak{M}) being then either void, or a one-point set, or an interval, we see as at the end of [4] that the class \Re contains \Re . As may be readily verified further, \mathfrak{M} is a primitive class in I (see p. 116 of our paper [1] for the terminology). In other words, M satisfies the following three conditions: (i) the interval I belongs to \mathfrak{M} ; (ii) if $A \in \mathfrak{M}$ and $B \in \mathbb{M}$, then $AB \in \mathbb{M}$; (iii) if $A \in \mathbb{M}$, there is a disjoint infinite sequence Δ of sets (M) such that $I - A = \lceil \Delta \rceil$. Consequently, in conformity with Theorem 1 of $\lceil 1 \rceil$, the smallest additive class (in I) containing the class M coincides with the smallest normal class containing M (see Saks [7], p. 83, for the terminology). But, taking into account the rectifiability of φ on *I*, we find easily that \Re is a normal class. It follows at once that \Re coincides with the Borel class in I, so that our assertion holds at least whenever E is a Borel subset of I.

Let us turn now to the case of general E. As it will follow from the lemma to be soon established below, we can enclose E in a Borel set $E_0 \subset I$ such that $\Gamma(\varphi; E) = \Gamma(\varphi; E_0)$. Since $\Gamma(\varphi; E_0) = \mathcal{E}(\varphi; E_0)$ by what has already been proved, we obtain $\Gamma(\varphi; E) \geq \mathcal{E}(\varphi; E)$. This, combined with the lemma of [4]§2, gives finally $\Gamma(\varphi; E) = \mathcal{E}(\varphi; E)$.

LEMMA. If a curve φ is continuous at all points of a set E, we can enclose E in a set H of the class \mathfrak{G}_{δ} such that $\Gamma(\varphi; H) = \Gamma(\varphi; E)$.

PROOF. We may plainly assume $\Gamma(\varphi; E)$ finite. To simplify our notations, let us write $\Phi(X) = d(\varphi[X])$ for each set X. Given any natural number n, the set E has an expression as the join of an infinite sequence $\Delta_n = \langle X_1^{(n)}, X_2^{(n)}, \cdots \rangle$ of its subsets such that $d(X_i^{(n)}) < \varepsilon$ for $i=1, 2, \cdots$ and $\Phi(\Delta_n) < \Gamma(\varphi; E) + \varepsilon$, where and below we write $\varepsilon = n^{-1}$