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1. Introduction. Consider an infinite sequence A=(a,) of in-
tegers. For any integers 7 and m=2 we denote by A(N,j, m) the
number of terms a, (1<<n<N) satisfying the condition a,=7 (mod m).
The sequence A is said to be uniformly distributed modulo m if the
limit
.1 . 1
thA(N, j, m)= po”

N>oo
exists for all j, 1<j<m. If A is uniformly distributed modulo m for
every integer m=2, we say simply that A is uniformly distributed.

I. Niven [1] has exhibited a number of interesting properties
of uniformly distributed sequences of integers. Among others he
proved that the sequence A, defined by a,=[ns], is uniformly dis-
tributed if and only if s is irrational or s=1/k for some non-zero
integer k, and that the uniform distribution of the sequence ([ns])
for every irrational s is equivalent to the well-known theorem that the
sequence of the fractional parts of ns is uniformly distributed modulo
1 for every irrational s (cf. e.g. [2]). It is not difficult to show that,
for every infinite sequence (a,) of mutually distinct integers, the
sequence ([a, s]) is uniformly distributed for almost all real numbers
s. (Here ‘almost all’ means ‘all but a set of Lebesgue measure zero’.)

The main purpose of the present note is to obtain some criteria
for sequences of integers to be uniformly distributed (with or with-
out the reference to modulus m).

Let us put, for brevity’s sake,

e(x) =exp (2rix).
We shall prove:

Theorem 1. Let A=(a,) be an infinite sequence of integers. A
necessary and sufficient condition that A be wuniformly distributed
modulo m, where m=2, is that

. 1 X h\ _
(1) hm—Ee(a,,——)-O
Nyoo N n=1 m
Sor all h=1,2,---,m—1.
Hence:

Corollary. A necessary and sufficient condition that an infinite
sequence A=(a,) of integers be uniformly distributed is that



