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In this paper we shall turn to the problem of finding the extended
Fourier-series expansion corresponding to each of the functions S(),
(), (), and R() defined in the statement of Theorem 1 cf. Vol.

38, No. 6 (1962), pp. 263-268.
Theorem 6. Let {,}, S(), and R() be the same notations as

those in Theorem 1 respectively. Then, for every p with sup I1<
< oo and every with 0__<< oo,

ao 1 (a--ib)(e) (t?: variable),( 7 ) R(e’) - +-=1where

Ifa---- S(pe") cos nt dt

(n--0,1,2,3, ..)(8) 1 /’
b,---J S(peu) sin nt dt

7C

and the series on the right-hand side converges absolutely and uni-
formly.

Proof. It follows from Theorem 1 that

where 0! and R(0) denote 1 and R(0) respectively, so that
ao + -,__x(a-- ib) (e’O (cpe’) (0 < < co)- =o n!

R(cpe).
In addition, the absolute and uniform convergence of the series

on the right-hand side of (7) is a direct consequence of the hy-
pothesis that R() is regular on the domain {:

Theorem 7. Let [2.}, S(), and R(2) be the same notations as
before. Then, for every p with sup 12, < P< oo and every with

0<:<1,


