3. On the Existence and the Propagation of Regularity of the Solutions for Partial Differential Equations. I

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1963)

1. Introduction. The object of this note is to derive a priori inequality based on our recent note [4], which is applicable to the existence theorem and the propagation of regularity of the solutions for partial differential equations.

Recently L. Hörmander [2] has already derived a similar inequality under some conditions for the principal part of given operators.

We shall consider differential operator L in a neighborhood of the origin in ($\nu+1$)-space: $(t, x)=\left(t, x_{1}, \cdots, x_{\nu}\right)$. Let $(m, \mathfrak{m})=\left(m, m_{1}, \cdots\right.$, $\left.m_{\nu}\right)\left(m_{j} \leqq m ; j=1, \cdots, \nu\right)$ be an appropriate real vector whose elements are positive integers. The operator considered in this note is of the form

$$
\begin{equation*}
L=L_{0}+\sum_{i+m|\alpha: \mathrm{m}| \leq m-1} b_{i, \alpha}(t, x) \frac{\partial^{i+|\alpha|}}{\partial t^{i} \partial x^{\alpha}} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{gather*}
L_{0}=\sum_{i+m|\alpha: \mathfrak{m}|=m} a_{i, \alpha}(t, x) \frac{\partial^{i+|\alpha|}}{\partial t^{i} \partial x^{\alpha}}\left(a_{m, 0}(t, x)=1\right) \tag{1.2}\\
\left(\alpha=\left(\alpha_{1}, \cdots, \alpha_{\nu}\right), x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{\nu}^{\alpha_{\nu}},|\alpha|=\alpha_{1}+\cdots+\alpha_{\nu},\right. \\
\left.|\alpha: m|=\alpha_{1} / m_{1}+\cdots+\alpha_{\nu} / m_{\nu}\right)
\end{gather*}
$$

where $b_{i, \alpha}$ are in L^{∞} and $a_{i, \alpha}$ in $C_{(t, x) .}^{\infty}{ }^{1)}$
Setting for (1.2) and real vectors $\xi=\left(\xi_{1}, \cdots, \xi_{\nu}\right)$

$$
\begin{equation*}
L_{0}(t, x, \lambda, \xi)=\sum_{i+m|\alpha: \mathfrak{m}|=m} a_{i, \alpha}(t, x) \lambda^{i} \xi^{\alpha} \tag{1.3}
\end{equation*}
$$

which we call the characteristic polynomial of L, we derive a priori inequality (3.3) under some conditions for the characteristic roots $\lambda=\lambda(\xi)$ of the equation $L_{0}(t, x, \lambda, \sqrt{-1} \xi)=0$ for $\xi \neq 0$.

The author would like to express his gratitude to Prof. M. Nagumo, Messrs. M. Yamamoto and A. Tsutsumi for their helpful discussions.
2. Definitions and lemmas. Let us define $r=r(\xi)$ for real vector ξ as a positive root of the equation

$$
\begin{equation*}
F(r, \xi) \equiv \sum_{j=1}^{\nu} \xi_{j}^{2} r^{-2 / m_{j}}=1 \quad(\xi \neq 0) . \tag{2.1}
\end{equation*}
$$

Then, r is in $C_{(\xi \neq 0)}^{\infty}$ and satisfies inequalities

[^0]
[^0]: 1) Strictly speaking it is sufficient to assume that $a_{i, \alpha}$ are in $C_{(t, x)}^{\boldsymbol{t}}$ for $k \geqq m+(\nu+1) \underset{1 \leqq j \leqq \nu}{\operatorname{Max}} m / m_{j}$.
