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III. Existence theorems. 1. Definition 3.1. Let be an analytic
closed curve on R, and o be a real differential of C. The integral

i ealleg the -period of
tia is called -exact if all its -periods vanish.

The a-exact differential can be written as Du for u eC.
Theorem 3.1. Let be an analytic closed curve which does not

deride R, then there exists a differential wH such that P,(w; )=1
and a-exact in R--

Pro@ We can construct a closed differential vCL which
is a-exact in R--r and P(v:r)=l. Set =JV, then D=0.
Therefore we have V=o+o with oeH, and weE. Since .eC,
we have weC and therefore o=Du with uC. In R--r, we have
w=v--Du, and hence is a-exact there. Moreover we have

f f f f
2. Let F(p) and G(p) be the functions of C+ satisfying

(3.2) --iFG>O and M I1 + lal
An (F, G)-pseudo-analytie function is an [a, b3-analytie function with

(S.S) a-- Fa--Fa =Fa--a
FG--FG FG--FG

and an (F, G)-pseudo-analytie differential is an [a, b-analytie differen-
tial with

(3.4) a-- F--a b-- Fa--Fa
FG--FG FG--FG

Under the condition (3.2), (F, G)-analytie function of the 2nd kind
(p)=u(p)+iv(p) satisfy the equation

(3.5) [v-- --z% Fz-i >0.

Sinee z sC+, u(p) is in C, and hence u is z-harmonic.
3. We fix the point posR, neighborhood V o Po, and its local

parameter z. Let Wo(Z) be the (F, G)-analytie unetion similar to
the function 1/z (nl) in V. Let o(z)=uo+iVo be the (F, G)-analytie


