2. Existence of Pseudo-Analytic Differentials on Riemann Surfaces. II

By Akira SAKAI

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1963)

III. Existence theorems. 1. Definition 3.1. Let γ be an analytic closed curve on R, and ω be a real differential of C. The integral

(3.1)
$$\int_{\tau} \frac{1}{\sqrt{\sigma}} \omega$$

is called the σ -period of ω over γ , and denoted by $P_{\sigma}(\omega; \gamma)$. A differential ω is called σ -exact if all its σ -periods vanish.

The σ -exact differential can be written as Du for $u \in C^1$.

Theorem 3.1. Let γ be an analytic closed curve which does not devide R, then there exists a differential $\omega \in H$ such that $P_{\sigma}(\omega; \gamma) = 1$ and σ -exact in $R - \gamma$.

Proof. We can construct a closed differential $\eta \in C^2 \cap L^2$ which is σ -exact in $R-\gamma$ and $P_{\sigma}(\eta;\gamma)=1$. Set $\eta_1=\sqrt{\sigma}\eta$, then $D_1\eta_1=0$. Therefore we have $\eta_1=\omega_h+\omega_1$ with $\omega_h\in H$, and $\omega_1\in E$. Since $\eta_1\in C_1$, we have $\omega_1\in C^1$ and therefore $\omega_1=Du$ with $u\in C^2$. In $R-\gamma$, we have $\omega=\eta_1-Du$, and hence ω is σ -exact there. Moreover we have

$$\int_{r} \frac{1}{\sqrt{\sigma}} \omega = \int_{r} \frac{1}{\sqrt{\sigma}} (\eta_{1} - Du) = \int_{r} (\eta - du) = \int_{r} \eta = 1.$$

2. Let F(p) and G(p) be the functions of $C^{1+\alpha}$ satisfying (3.2) $-i\overline{F}G > 0$ and $M \ge |F| + |G| \ge M^{-1} > 0$.

An (F, G)-pseudo-analytic function is an [a, b]-analytic function with

(3.3)
$$a = -\frac{\overline{F}G_{\bar{z}} - F_{\bar{z}}\overline{G}}{F\overline{G} - \overline{F}G}, \quad b = \frac{FG_{\bar{z}} - F_{\bar{z}}G}{F\overline{G} - \overline{F}G},$$

and an (F, G)-pseudo-analytic differential is an [a, b]-analytic differential with

(3.4)
$$a = -\frac{\overline{F}G_{\overline{z}} - F_{\overline{z}}\overline{G}}{F\overline{G} - \overline{F}G}, \quad b = -\frac{FG_{z} - F_{z}G}{F\overline{G} - \overline{F}G}.$$

Under the condition (3.2), (F, G)-analytic function of the 2nd kind $\chi(p) = u(p) + iv(p)$ satisfy the equation

(3.5)
$$\begin{cases} v_x = -\sigma u_y \\ v_y = \sigma u_x \end{cases} \quad \sigma = i \frac{F}{G} > 0.$$

Since $\sigma \in C^{1+\alpha}$, u(p) is in C^2 , and hence u is σ -harmonic.

3. We fix the point $p_0 \in R$, a neighborhood V of p_0 , and its local parameter z. Let $W_0(z)$ be the (F, G)-analytic function similar to the function $1/z^n$ $(n \ge 1)$ in V. Let $\chi_0(z) = u_0 + iv_0$ be the (F, G)-analytic