25. On Theorems of Korovkin

By Hisashi CHODA and Marie ECHIGO

Department of Mathematics, Osaka Gakugei Daigaku (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1963)

1. In a recently published book [3], P. P. Korovkin established the following interesting theorems which are fundamental in his theory of approximation:

THEOREM 1. If the two conditions (1) $\sigma_n(1) \rightarrow 1$, as $n \rightarrow \infty$, (2) $\sigma_n(g) \rightarrow 0$, as $n \rightarrow \infty$, where $a \leq c \leq b$ and (3) $g(x) = (x-c)^2$, are satisfied for the sequence of positive linear functionals σ_n on the Banach space C[a, b] of all continuous functions on [a, b], then (4) $\lim_{n \to \infty} \sigma_n(f) = f(c)$

for any $f \in C[a, b]$.

THEOREM 2. If the two conditions (1) and (2) are satisfied for the sequence of positive linear functionals σ_n on C[a, b] and

$$(5) g(x) = \sin^2 \frac{x-c}{2}$$

where $a \leq c \leq b$, then (4) is true for $f \in C[a, b]$ which has the period 2π .

In this paper, we shall prove an abstract theorem which is a generalization of these theorems of Korovkin.

2. We shall introduce a few terms before we state our theorem. If a commutative Banach algebra A has an involution $x \rightarrow x^*$ satisfying $||xx^*|| = ||x||^2$ for any element x of A, then A will be called a commutative B^* -algebra. If a linear functional σ on a B^* -algebra A satisfies the condition that $\sigma(xx^*) \ge 0$ for any element x of A, we shall say that σ is positive. It is well-known [4; p. 213] that a positive linear functional σ on a B^* -algebra A satisfies the inequality of Cauchy-Schwarz:

$$|\sigma(x^*y)|^2 \leq \sigma(|x|^2)\sigma(|y|^2)$$

for any $x, y \in A$, where $|x| = (x^*x)^{\frac{1}{2}}$. We shall call a positive linear functional σ a state whenever $\sigma(1)=1$ where 1 is the identity element of A. If a state χ of a commutative B^* -algebra is not expressible by a convex sum of two other states, χ will be called a *character*. It is also well-known [4; p. 229], that a character χ determines a maximal ideal M uniquely such as $M = \{x: \chi(x) = 0\}$, and conversely that a maximal ideal M determines a character χ uniquely such that $\chi(x)$ coincides with the natural homomorphism of A onto A/M. Henceforth