24. Inversive Semigroups. II

By Miyuki YAMADA

Department of Mathematics, Shimane University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1963)

This paper is the continuation of the previous paper Yamada [1]. Any terminology without definition should be referred to [1]. In this paper, we shall present necessary and sufficient conditions for an inversive semigroup to be isomorphic to some special subdirect product of a group and a band.

The proofs of any theorems and corollaries are omitted and will be given in detail elsewhere.¹⁾

§1. Group-semilattices. Let G be a group, and Γ a semilattice. Let $\{G_r : r \in \Gamma\}$ be a collection of subgroups G_r of G such that

(1) $\bigcup \{G_{\gamma} : \gamma \in \Gamma\} = G$

and (2) if $\alpha \leq \beta$ (i.e., $\alpha \beta = \beta \alpha = \alpha$) then $G_{\alpha} \supset G_{\beta}$.

Let $S = \sum_{\tau \in \Gamma} G_{\tau}$, where \sum denotes the class sum (i.e., the disjoint sum) of sets. If $x \in G$ is an element of G_{τ} , then we denote x by (x, γ) when we regard x as an element of G_{τ} in S. Now, S becomes a semigroup under the multiplication \circ defined by the following

(P) $(x, \alpha) \circ (y, \beta) = (xy, \alpha\beta).$

That is, S is a compound semigroup of $\{G_r : r \in \Gamma\}$ by Γ ,²⁾ and accordingly a (C)-inversive semigroup. We shall call such an S a groupsemilattice of G, and denote by $\{G_r | \Gamma, G\}$. Moreover, in this case we shall call G the basic group of S. Now, let I be a band whose structure decomposition is $I \sim \sum \{I_r : r \in \Gamma\}$.³⁾ Then, we can consider the spined product of S and I with respect to Γ , because S and I have the same structure semilattice Γ .

As a connection between subdirect products of G and I and the spined product of S and I, we have

Theorem 1. The spined product of group-semilattice of G and a band I is isomorphic to an inversive subdirect product of G and $I.^{4}$. Conversely, any inversive subdirect product of a group G and a band I is isomorphic to the spined product of a group-semilattice of G and I.

¹⁾ This is an abstract of the paper which will appear elsewhere,

²⁾ For compound semigroups, see M. Yamada, Compositions of semigroups, Kōdai Math. Sem. Rep., 8, 107-111 (1956).

³⁾ For the definition of the structure decomposition of a band, see N. Kimura, Note on idempotent semigroups. I, Proc. Japan Acad., **33**, 642-645 (1954).

⁴⁾ Let D be a subdirect product of G and I. Then, D is clearly a semigroup. If D is an inversive semigroup, then D is called an *inversive subdirect product* of G and I.