21. Normality and Perfect Mappings

By Takesi Isiwata
Tokyo Gakugei University
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1963)

We assume that the spaces considered here are always completely regular T_{1}-spaces. A mapping φ from X onto Y is said to be perfect if φ is a closed continuous mapping and every $\varphi^{-1}(y), y \in Y$, is compact, i.e., φ is a compact mapping. Let E be any dense subspace of a given space X. It is easy to see that the normality of $X \times \beta E$ implies the normality of $X \times B E$ where $B E$ is any compactification of E and βE is the Stone-Čech compactification of E. But the following problem is open [1, §4].
${ }^{*}$) Does the normality of $X \times B E$ implies the normality of $X \times \beta E$?

This problem is closely related to the following open problem [1, problem 4]:
$\left({ }^{* *}\right)^{1)}$ Let φ be a perfect mapping from X onto Y such that the image of any proper closed subset of X is a proper closed subset of Y. Is it true that X is normal whenever Y is normal?

In §1, we shall investigate some special class of spaces, and, in §2, we shall give the negative answers to the problems (*) and (**).

In the sequel, ω_{α} denotes the smallest ordinal of cardinal $\boldsymbol{\aleph}_{\alpha}$ and we mean by $W\left(\omega_{\alpha}\right)$ the set of all cardinals less than ω_{α}; then $W\left(\omega_{\alpha}\right)$ ($\alpha \neq 0$), endowed the interval topology, is a countably compact normal space and there are no subsets of cardinal $\left\langle\mathbf{N}_{\alpha}\right.$ which are cofinal [6, 9 K$]$.

1. Closedness of projections. We mean by φ (or φ_{X}): $X \times Y \rightarrow X$ the projection $\varphi(x, y)=x$ from $X \times Y$ onto X. Let \mathfrak{N} be the class consisting of all X such that $\varphi: X \times Y \rightarrow X$ is always closed for any countably compact space Y.
1.1. Lemma. If X has the property such that for any point p and any subset E of X, there is a sequence in E converging to p whenever p is an accumulation point of E, then X belongs to \mathfrak{N}.

Proof. Let Y be a countably compact space and F a closed subest of $X \times Y$ such that the image E of F under $\varphi: X \times Y \rightarrow X$ is not closed. There is a point p in $\bar{E}-E$. By the assumption, there is a sequence $\left(x_{n}\right)$ in E converging to p. Let $\left(x_{n}, y_{n}\right)$ be a point of F for every n. Since Y is countably compact, there is an accumula-

[^0]
[^0]: 1) This problem is raised by Nagami [7] in connection with Ponomarev's theorem [8].
