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1. Besides its own interest, Evans’ harmonic function on open
Riemann surfaces is important in the function theory on open
Riemann surfaces. In this note, we shall sketch a method to con-
struct Evans’ harmonic function on open Riemann surfaces. The
detail will be published elsewhere.

DEFINITION (Boboc-Constantinescu-Cornea [_1). Let R be a hyper-
bolic Riemann surface and be the class of all sequences (Zn)nl of
points in R which do not accumulate in R and

lim inf g(z, z0) > 0,
where g(z, Zo) is Green’s function on R with its pole Zo in R. An
Evan’s function S(z) on R is a positive continuous superharmonic

function on R such that
lim. S(z)- oo

for any (zn) in . Moreover if S(z) is harmonic on R, we call S(z)
an Evans’ harmonic function on R.

Boboc, Constantinescu and Cornea [1] proved the existence of

Evans’ function on R. In the case where R--R’--Ro, where R’ is a
parabolic Riemann surface and R0 is a relatively compact subdomain
of R’ with smooth boundary, Kuramochi [2] proved the existence of
Evans’ harmonic function on R, from which the existence of Evans-
Selberg’s potential on R’ follows at once by using the linear operator
method of Sario [8]. The present author [6] gave an alternating
proof of Kuramochi’s result. Here we state the following

THEOREM. There exists an Evan’s harmonic function on hyper-
bolic Riemann surfaces.

2. For the proof of our theorem, we use the theory be Royden’s
compa.ctification. The present method to construct the desired func-
tion is already used partly in [6 and [7.

Let R be an arbitrary Riemann surface and M(R) be the Royden’s
algebra associated with R, i.e. the algebra of all complex-valued
absolutely continuous functions in the sense of Tonelli which are
bounded and of finite Dirichlet integral. The algebra M(R)is a
Banach algebra with the norm ]]fl]=sup([f(z)]; zR)+/D(f)and the
subalgebra M(R) C(R) is dense in M(R) with respect to this norm.
Hence Green’s formula and the Dirichlet principle can be freely
applied to functions in M(R) ([3]).


