65. On Regular Algebraic Systems

A Note on Notes by Iseki, Kovacs, and Lajos

F. M. Sioson

University of Hawaii
(Comm. by Kinjirô Kunugi, m.J.A., May 11, 1963)
L. Kovacs [2], K. Iseki [1], and S. Lajos [3] characterized regular rings and semigroups as algebraic systems satisfying the property $R \cap L=R L$ for any right ideal R and any left ideal L. A semigroup (S, \cdot) and a ring or semiring ($S,+, \cdot$) is regular iff for each $s \in S$ there exists an $x \in S$ such that $s x s=s$. Clearly, this follows from the statement: for each $s \in S$, there exist $x, y \in S$ such that sxys $=s$. The two statements are equivalent, for, if for each $s \in S$ there exists an $x \in S$ such that $s x s=s$, then also there exist a $z \in S$ such that $x=x z x=x(z x)=x y$ and therefore $s x y s=s$.

In this communication we shall give a unified generalization of the characterizations of Kovacs, Iseki, and Lajos. It turns out that the description of regularity in terms of ideals is intrinsic to associative operations in general.

By an algebraic system $\left(A, o_{1}, \cdots, o_{n}\right)$ or simply A is meant a set A closed under a collection of m_{i}-ary operations o_{i} and often also satisfying a fixed set of laws. For instance, an m-ary operation (\cdots) on A satisfies the associative law iff for each $x_{1}, \cdots, x_{2 m-1} \in A$, $\left(\left(x_{1} x_{2} \cdots x_{m}\right) x_{m-1} \cdots x_{2 m-1}\right)=\left(x_{1}\left(x_{2} x_{3} \cdots x_{m-1}\right) \cdots x_{2 m-1}\right)=\cdots=\left(x_{1} x_{2} \cdots\left(x_{m-1}\right.\right.$ $\left.x_{m-2} \cdots x_{2 m-1}\right)$). A is said to be regular with respect to the operation (\cdots) iff for each $a \in A$ there exist $x_{2}, x_{3}, \cdots, x_{m} ; y_{1} y_{3}, \cdots, y_{m} ; \cdots ; z_{1}$, $z_{2}, \cdots, z_{m-1} \in A$ such that

$$
\left(\left(a x_{2} \cdots x_{m}\right)\left(y_{1} a y_{3} \cdots y_{m}\right) \cdots\left(z_{1} z_{2} \cdots z_{m-1} a\right)\right)=a
$$

Note that if A is both associative and regular relative to the operation, then the preceding identity may be rewritten as follows:

$$
\begin{gathered}
\left.\left(\left(a x_{2} \cdots x_{m}\right)\left(y_{1} a \cdots y_{m}\right) \cdots\left(z_{1} z_{2} \cdots a\right)\right)=\left(a\left(x_{2} \cdots x_{m} y_{1}\right) a \cdots\left(z_{1} z_{2} \cdots z_{m-1}\right) a\right)\right) \\
=\left(a v_{1} a \cdots\left(\cdots v_{m-1} a\right)\right)=a \text { for some } v_{1}, \cdots, v_{m-1} \in A .
\end{gathered}
$$

A subset S of A constitues a subsystem iff S is closed under the same operations and satisfies the same fixed laws in A.

Following G. B. Preston [4], a j-ideal $j=1, \cdots, m$ relative to the m-ary operation (\cdots) is defined to be a subsystem I_{j} such that for any $x_{1}, x_{2}, \cdots, x_{m} \in A$, if $x_{j} \in I_{j}$ then $\left(x_{1} x_{2} \cdots x_{m}\right) \in I_{j}$. The j-ideal relative to (\cdots) generated by an element $a \in A$ (usually called a principal j-ideal) is denoted by

$$
(a)_{j}=(A A \cdots \stackrel{j}{a} \cdots A) \cup\{a\} .
$$

