63. On a Theorem of Cluster Sets

By Kikuji MATSUMOTO

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., May 11, 1963)

1. Let D be an arbitrary domain in the z-plane with boundary Γ and let E be a totally disconnected closed set contained in Γ . Supposing that w=f(z) is non-constant, single-valued and meromorphic in D, we associate with each point $z_0 \in \Gamma$ the following sets of values.

(i) The cluster set $C_D(f, z_0)$. $\alpha \in C_D(f, z_0)$ if there exists a sequence of points $\{z_n\}$ with the following properties:

$$z_n \in D$$
, $\lim_{n \to \infty} z_n = z_0$ and $\lim_{n \to \infty} f(z_n) = \alpha$.

(ii) The boundary cluster set $C_{\Gamma-E}(f, z_0)$. $\alpha \in C_{\Gamma-E}(f, z_0)$ if there exists a sequence of points $\{\zeta_n\}$ of $\Gamma - (\{z_0\} \smile E)$ such that

$$w_n \in C_D(f, \zeta_n)$$
 for each n ,

$$z_0 \!=\! \lim \zeta_n \quad ext{and} \quad lpha \!=\! \lim w_n.$$

(iii) The range of values $R_D(f, z_0)$. This is the set of values α such that

 $z_n \in D$, $\lim z_n = z_0$ and $f(z_n) = \alpha$ for every n.

In the theory of cluster sets, the following theorem is one of the most important.¹⁾

THEOREM. If E is of capacity²⁾ zero and z_0 is a point of E such that $U(z_0) \frown (\Gamma - E) \neq \phi$ for every neighborhood $U(z_0)$ of z_0 , then the set $\Omega = C_D(f, z_0) - C_{\Gamma - E}(f, z_0)$

is empty or open.

In the case where D is the unit disc |z| < 1, we can replace $C_{\Gamma-\mathbb{Z}}(f, z_0)$ in this theorem by a considerably smaller set and obtain yet the same assertion (see Ohtsuka [5] and Noshiro [3]).¹⁾ We shall show in the below that, in the general case where D is an arbitrary domain, we can also replace $C_{\Gamma-\mathbb{Z}}(f, z_0)$ by a considerably smaller set to obtain the same assertion of the theorem.

2. We now define new sets of values.

(iv) The cross cluster set $C_D^{\oplus}(f, z_0)$. $\alpha \in C_D^{\oplus}(f, z_0)$ if there exists a sequence of points $\{z_n\}$ with the following properties:

$$z_n \in D, \ \Re z_n = \Re z_0 \text{ or } \Im z_n = \Im z_0 \text{ for each } n,^3$$

 $\lim_{n\to\infty} z_n = z_0$ and $\lim_{n\to\infty} f(z_n) = \alpha$.

¹⁾ Cf. Noshiro [4].

²⁾ In this note, capacity means always logarithmic capacity.

³⁾ For a complex number z, we denote by $\Re z$ and $\Im z$ the real and the imaginary part of z respectively.