61. A Remark on Gentzen's Paper "Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie". II

By Gaisi TAKEUTI

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., May 11, 1963)

In this paper we shall define systems \mathfrak{S}_2 and \mathfrak{S}_3 and prove the theorem stated in the first paper of this title for these systems.

Definition of the system \mathfrak{S}_2 . \mathfrak{S}_2 is a system obtained from G^1LC modifying it as follows (cf. [8]):

1. Every beginning sequence of \mathfrak{S}_2 is of the form $D \to D$ or of the form $a=b, A(a) \to A(b)$ or a 'mathematische Grundsequenz' in the sense of the first paper.

2. The inference-schema 'induction' is added.

3. The inference V left on an f-variable of the form

$$\frac{F(V), \ \Gamma \to \Delta}{V\varphi F(\varphi), \ \Gamma \to \Delta}$$

is restricted by the condition that $V\varphi F(\varphi)$ is *f*-closed, i.e. $V\varphi F(\varphi)$ does not contain any free *f*-variable.

The proof of the theorem and the result (†) for \mathfrak{S}_2 can be performed in the same way as for \mathfrak{S}_1 .

The definition of \mathfrak{S}_3 . Let I(a) and a < *b be two primitive recursive predicates. Let us assume that the following condition is satisfied: <* is a well-ordering of I, where I is $\{a \mid I(a)\}$.

Now the formal system \mathfrak{S}_3 is obtained as follows from G^1LC .

1. Every beginning sequence is of the form $D \rightarrow D$ or of the form a=b, $A(a) \rightarrow A(b)$ or the 'mathematische Grundsequenz' in the sense of the first paper or the following form.

 $I(a), A_j(a, b) \rightarrow G_j(a, b\{x, y\} (A_j(x, y) \land x < *a))$

(*)

 $I(a), G_j(a, b, \{x, y\}(A_j(x, y) \land x < *a)) \rightarrow A_j(a, b)$ $j=0, 1, 2, \cdots$. Here $\{x, y\}$ is used instead of usual notations $\hat{x}\hat{y}, \lambda xy$ and A_1, A_2, A_3, \cdots are new symbols for predicates. Moreover, $G_j(j=0, 1, 2, \cdots)$ are arbitrary formulas satisfying the following conditions:

a) $G_j(a, b, \alpha)$ does not contain $A_j, A_{j+1}, A_{j+2}, \cdots$.

b) If $G_j(a, b, \alpha)$ contains the figures of the form $V\varphi A(\varphi)$, then $A(\beta)$ does not contain any bound *f*-variable.

- 2. The inference-schema called 'induction' is added.
- 3. The inference V left on an f-variagle of the form