59. On Bochner Transforms

By Koziro IWASAKI

Musashi Institute of Technology, Tokyo (Comm. Zyoiti Suetuna, M.J.A., May 11, 1963)

1. If $\varphi(r)$ is a function of the distance r from the origin of h-dimensional Euclidean space, then the Fourier transform of $\varphi(r)$, that is the integral transform by the kernel function $\exp(2\pi_i(x_1y_1+\cdots+x_hy_h))$, is also a function of r and is expressed as following:

$$T\varphi(r) = 2\pi r^{1-\frac{\hbar}{2}} \int_{0}^{\infty} J_{\frac{\hbar}{2}-1}(2\pi r \rho) \rho^{\frac{\hbar}{2}} \varphi(\rho) d\rho,$$

where $J_{\nu}(x)$ is Bessel function ([1] p. 69, Theorem 40).

By the general theory of Fourier transform the linear operator T has the properties:

- (a) T transforms $\varphi(ur)$ to $|u|^{-n}T\varphi\left(\frac{r}{u}\right)$ if $u \neq 0$,
- (b) T transforms $e^{-\pi r^2}$ to $e^{-\pi r^2}$,
- (c) there exists a number series $\{a_0, a_1, \dots\}$ which satisfies $\sum_{n=0}^{\infty} a_n \varphi(\sqrt{n}) = \sum_{n=0}^{\infty} a_n T \varphi(\sqrt{n}) \text{ (Poisson summation formula),}$
- (d) $T^2\varphi = \varphi$ (the inversion formula), and

(e)
$$\int_{0}^{\infty} |T\varphi(r)|^2 r^{k-1} dr = \int_{0}^{\infty} |\varphi(r)|^2 r^{k-1} dr$$
 (Parseval formula).

In his paper [2] Bochner proved that the properties (a), (b) and (c) characterize the operator T.

We shall describe here the theorem of Bochner in somewhat modified form:

Let us denote by \mathfrak{P}_0 the family of all functions $\varphi(x)$ on $[0, \infty)$ such that $\left(\frac{d}{xdx}\right)^r \varphi(x)$ exists at 0 for any r and every derivative of $\varphi(x)$ decreases rapidly as x tends to infinity.

Theorem of Bochner. Let T be a linear operator from \mathfrak{P}_0 to \mathfrak{P}_0 which satisfies the following conditions:

- (A) T transforms $\varphi(ux)$ to $|u|^{-h}T\varphi\left(\frac{x}{u}\right)$ for any $u \neq 0$, where h is a positive constant,
- (B) $e^{-\frac{2\pi}{\lambda}x^2}$ is an eigenfunction of T, where λ is a positive constant, and
- (C) there exists number series $\{a_0, a_1, a_2, \cdots\}$ such that $\sum_{n=1}^{\infty} \frac{|a_n|}{n^{s_0}}$ converges for a positive number s_0 and