59. On Bochner Transforms

By Koziro Iwasaki
Musashi Institute of Technology, Tokyo
(Comm. Zyoiti Suetuna, m.J.A., May 11, 1963)

1. If $\varphi(r)$ is a function of the distance r from the origin of h-dimensional Euclidean space, then the Fourier transform of $\varphi(r)$, that is the integral transform by the kernel function $\exp \left(2 \pi_{i}\left(x_{1} y_{1}+\right.\right.$ $\left.+\cdots+x_{h} y_{h}\right)$), is also a function of r and is expressed as following:

$$
T \varphi(r)=2 \pi r^{1-\frac{h}{2}} \int_{0}^{\infty} J_{\frac{h}{2}-1}(2 \pi r \rho) \rho^{\frac{h}{2}} \varphi(\rho) d \rho
$$

where $J_{\nu}(x)$ is Bessel function ([1] p. 69, Theorem 40).
By the general theory of Fourier transform the linear operator T has the properties:
(a) T transforms $\varphi(u r)$ to $|u|^{-h} T \varphi\left(\frac{r}{u}\right)$ if $u \neq 0$,
(b) T transforms $e^{-\pi r^{2}}$ to $e^{-\pi r^{2}}$,
(c) there exists a number series $\left\{a_{0}, a_{1}, \cdots\right\}$ which satisfies $\sum_{n=0}^{\infty} a_{n} \varphi(\sqrt{n})=\sum_{n=0}^{\infty} a_{n} T \varphi(\sqrt{n})$ (Poisson summation formula),
(d) $T^{2} \varphi=\varphi$ (the inversion formula),
and
(e) $\int_{0}^{\infty}|T \varphi(r)|^{2} r^{k-1} d r=\int_{0}^{\infty}|\varphi(r)|^{2} r^{k-1} d r$ (Parseval formula).

In his paper [2] Bochner proved that the properties (a), (b) and (c) characterize the operator T.

We shall describe here the theorem of Bochner in somewhat modified form:

Let us denote by \mathfrak{R}_{0} the family of all functions $\varphi(x)$ on $[0, \infty)$ such that $\left(\frac{d}{x d x}\right)^{r} \varphi(x)$ exists at 0 for any r and every derivative of $\varphi(x)$ decreases rapidly as x tends to infinity.

Theorem of Bochner. Let T be a linear operator from \mathfrak{P}_{0} to P_{0} which satisfies the following conditions:
(A) T transforms $\varphi(u x)$ to $|u|^{-h} T \varphi\left(\frac{x}{u}\right)$ for any $u \neq 0$, where h is a positive constant,
(B) $e^{-\frac{2 \pi}{\lambda} x^{2}}$ is an eigenfunction of T, where λ is a positive constant, and
(C) there exists number series $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}$ such that $\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n^{s_{0}}}$ converges for a positive number s_{0} and

