79. A Characteristic Property of L_{ρ} -Spaces ($\rho \ge 1$). III

By Kôji Honda

Muroran Institute of Technology

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1963)

The aim of this paper is to give a characterization of the abstract L_{ρ} -space¹⁾ ($\rho \ge 1$) in terms of the norm.

Through this paper, let R be a Banach lattice with a continuous semi-order.²⁾

R is called the abstract L_{ρ} -space, if the norm satisfies the following condition:

(L_e) $||x+y||^{\rho} = ||x||^{\rho} + ||y||^{\rho}$ for every $|x| \frown |y| = 0$, $x, y \in \mathbf{R}$.

When we consider the case which the norm has the restricted Gateaux's differential i.e.,

(RG)
$$G(x; [p]x) = \lim_{\varepsilon \to 0} \frac{||x + \varepsilon [p]x|| - ||x||}{\varepsilon}$$

exists for each $||x|| \leq 1$ and each projector $[p]^{3}$, it is easily seen that for numbers α, β and projectors [p], [q]

(1) $G(x; \alpha[p]x + \beta[p]y) = \alpha G(x; [p]x) + \beta G(x; [q]x)$ if the right side has a sense.

Used the condition (RG), our characterization is described in the following form.

Theorem. Suppose that \mathbf{R} is at least three dimensional space. In order that \mathbf{R} is the abstract L_{ρ} -space for some $\rho \ge 1$, it is necessary and sufficient that the norm on \mathbf{R} satisfies the conditions (RG) and

 $(*) \qquad \qquad G(a+x;a) = G(a+y;a)$

for every $a \frown x = a \frown y = 0$ and ||a+x|| = ||a+y|| = 1.

Remark. It is known that the Gateaux's differential produces the equality in the Hölder's inequality. In this sense, our theorem is closely related to the previous paper [4 and 5], especially, if the conjugately similar transformation T preserves the norm then ||a+x||=||a+y||=1 and $a \frown x = a \frown y = 0$ imply

$$G(a+x;a) = \frac{(a, \mathbf{T}(a+x))}{||\mathbf{T}(a+x)||} = \frac{(a, \mathbf{T}a)}{||\mathbf{T}(a+x)||} = \frac{(a, \mathbf{T}(a+y))}{||\mathbf{T}(a+y)||} = G(a+y;a)$$

because for ||x||=1 we have (x, Tx)=||Tx|| and hence G(x; [p]x)

3) For any $p \in \mathbf{R}$, $[p]x = \bigcup_{n=1}^{\infty} (|p| \frown nx^+) - \bigcup_{n=1}^{\infty} (|p| \frown nx^-)$ where $x^+ = x \smile 0$ and $x^- = (-x)^+$.

¹⁾ See [3: p. 312]. The braquet [\cdot] denotes the number of the reference in the last.

²⁾ A semi-order is said to be *continuous*, if for any $x_{\nu} \downarrow_{\nu=1}^{\infty}$ and $0 \leq x_{\nu} \in \mathbf{R}$ there exists x such that $x_{\nu} \downarrow_{\nu=1}^{\infty} x$.