450 [Vol. 39,

103. Open Mappings and Metrization Theorems

By Sitiro HANAI

Osaka Gakugei Daigaku

(Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1963)

Let X be a T_1 -space and let $\mathfrak{U} = \bigcup_{n=1}^{\infty} \mathfrak{U}_n$ be an open base of X where each \mathfrak{U}_n is a point-finite system of open sets, then \mathfrak{U} is called to be a σ -point-finite open base of X.

In this note, we shall obtain the necessary and sufficient condition that X has a σ -point-finite open base which is a generalization of K. Nagami's theorem [7]. As its application, we shall next obtain some metrization theorems.

1. Open images. K. Nagami [7] has shown the following theorem: a metric space is always an open compact image¹⁾ of a 0-dimensional metric space. As a generalization of this theorem, we get the following

Theorem 1. A T_1 -space X has a σ -point-finite open base if and only if X is an open compact image of a 0-dimensional metric space.

Proof. As the "if" part is easily seen from our previous note ([4], Theorem 5), we shall prove the "only if" part.

The following proof is carried out in the similar way as K. Nagami [7]. We may assume that X has a σ -point-finite open base $\mathfrak{ll} = \bigcup_{n=1}^{\infty} \mathfrak{ll}_n$ such that each $\mathfrak{ll}_n = \{U_{\alpha_n} | \alpha_n \in A_n\}$ is a point-finite open covering of X and \mathfrak{ll}_{n+1} is a refinement of \mathfrak{ll}_n for $n=1,2,\cdots$. Let A be the set of points $a=(\alpha_n; n=1,2,\cdots)$ of the product space $\prod_{n=1}^{\infty} A_n$, where each A_n is a discrete topological space, such that $\bigcap_{n=1}^{\infty} U_{\alpha_n} = x$ for any point x of X. Then A is a 0-dimensional metric space as the subspace of $\prod_{n=1}^{\infty} A_n$. Let f(a)=x, then f is an open continuous mapping of A onto X such that $f^{-1}(x)$ is compact for any point x of X (cf. [7]). This completes the proof.

As an immediate consequence of Theorem 1 and a theorem in our previous note ($\lceil 4 \rceil$, Theorem 5), we get the following

Theorem 2. A T_1 -space X has a σ -point-finite open base if and only if there exists a countable family $\{\mathfrak{ll}_n\}$ of point-finite open coverings of X such that $\{(S(x,\mathfrak{ll}_n) \mid n=1,2,\cdots\} \text{ is a neighborhood basis of } x \text{ for each point } x \text{ of } X.$

¹⁾ Let f(X)=Y be an open continuous mapping. If $f^{-1}(y)$ is compact for each point y of Y, then Y is said to be an open compact image of X.