95. A Classification of Orientable Surfaces in 4-Space

By Hiroshi NOGUCHI

Waseda University

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1963)

Things will be considered only from the *piecewise-linear* (or semilinear) and *combinatorial* point of view. Terminology relies heavily on [4].

Let M_i be a closed (orientable) oriented surface in an (orientable) oriented 4-manifold W_i without boundary, i=1,2. Then M_1 is isoneighboring to M_2 if there are a regular neighborhood U_i of M_i in W_i and an onto, orientation preserving homeomorphism $\psi: U_1 \rightarrow U_2$ such that $\psi(M_1) = M_2$ where $\psi | M_1$ is orientation preserving and where the orientation of U_i is induced from W_i .

By Theorem 1 of [4], the iso-neighboring relation is an equivalence relation, and the *collection of singularities* of surface settled by [3] is an invariance under the iso-neighboring relation.

Another invariance may be defined as follows. Let a closed oriented surface M be in an oriented 4-manifold W without boundary, and let K and L be simplicial subdivisions of M and W respectively such that K is a subcomplex of L, where it is assumed without loss of generality that for each (closed) simplex of L the intersection of the simplex and M is either empty or a simplex of K.

For each vertex Δ of K, ∇ and \Box denote the 2-, 4-cells dual to Δ in K and L respectively. Then $\partial \nabla$ and $\partial \Box$ are a circle and a 3sphere respectively such that $\partial \nabla \subset \partial \Box$, where ∂X denotes the boundary of X. Then the sum U of all 3-cells dual to 1-simplices (of K), incident to Δ , in L is a regular neighborhood of $\partial \nabla$ in $\partial \Box$ by [4], whose boundary is a torus T. If orientations of $\partial \nabla$ and $\partial \Box$ are induced from the orientation of ∇ and \Box which are naturally induced from M and W respectively, then the oriented pair $\partial \nabla$, $\partial \Box$ may be regarded as a knot. Then, by [2], the meridian a and the longitude b are defined for the knot (where a and b are 1-cycles on T). Let Δ_0 be a fixed vertex of K. Then the cycle $\sum_j b_j$ is homologous to $w a_0$ in $\bigcup_j T_j$ for some integer w where j varies on vertices Δ_j of K. It is proved that the integer w, called the Stiefel-Whitney number, is an invariance of M in W under the iso-neighboring relation. The proof is carried out by the elementary routine of algebraic topology; w is independent of choice of Δ_0 , and of subdivisions K, L concerned, so that it is invariant. A simple proof will be supplied in the subsequent paper by R. Takase $\lceil 6 \rceil$.