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Mathematical Institute, Waseda University, Tokyo

(Comm. by Zyoiti SUTUNA, M.Z.A., Sept. 12, 1963)

(1) Introduction. Let B(z) be Blaschke products:

B(z)- 1-I b(z, a),

b(z, a)=/la .(a--z)/(1--z),
0<lal<l (n--l, 2,...),

(1.1) (1_ Inl)< / oo.
’:1

In this note, we shall establish the following two theorems on boundary
convergence of Blaschke-products.

Theorem 1 is concerned with the necessary and sufficient condi-
tion for B(z) to be regular at z-e:

Theorem 1. If z--e is not the limiting point of {a}, then B(z)
is absolutely and uniformly convergent to a regular function in the
neighborhood of z- e.

As its immediate consequences, we get
Corollary 1. For B(z) to be singular at z--d, it is necessary

and sucient that z-e is the limiting point of {a].
Corollary 2. If B(z) is regular at z--e% then B(z) is uniformly

and absolutely convergent in the neighborhood of z--e.
In the preceding paper ([2 4-5), the author proved Corollary 1

by somewhat complicated method.
Theorem 2 is of Abelian type:
Theorem 2. If B(z) is absolutely convergent at z--e% then B(z)

tends uniformly to B(d) as z-->d within Stolz-domain with vertex
at

As its consequence, we have
Corollary 3. If B(z) is absolutely convergent at z-e, then

B(re) is continuously defined for 0<= r<= + oo, by the unique formula:
+oo

1-I b(re% a).
Corollaries 2 and 3 are remarkable phenomena, whose analogy

in the case of Taylor series cannot exist evidently.
(2) Proof of Theorem 1. By the simple computation,

(2.1) B(z)- 1-I {1 - c(z, a)},

where


