126. On a Characteristic Property of Confocal Conic Sections

By Hiroshi Haruki
Institute of Mathematics, College of General Education, Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1963)

In this paper we shall characterize confocal conic sections from the standpoint of conformal mapping by an entire function. In the previous papers (see [1], [2]) we discussed conic sections in detail from the same standpoint making Ivory's Theorem the principal subject.

From the fact that the mapping by a non-constant entire function $w=f(z)$ is conformal we can conclude that the horizontal and vertical lines $\operatorname{Im}(z)=$ const. and $\operatorname{Re}(z)=$ const. are transformed by the function into the two families of curves which intersect each other at right angles. Then, we denote an arbitrary curvilinear rectangle by C_{1} $C_{2} C_{3} C_{4}$ where C_{1}, C_{2}, C_{3}, and C_{4} are four complex constants.

Theorem. If γ is a fixed point in the w-plane and if $\left|\gamma-C_{1}\right|+$ $\left|\gamma-C_{3}\right|=\left|\gamma-C_{2}\right|+\left|\gamma-C_{4}\right|$, then the two families of curves above are confocal conic sections which have their common foci at the point γ.

Proof. By hypothesis we have the following functional equation: (1)

$$
|f(x+y)-\gamma|+|f(x-y)-\gamma|=|f(x+\bar{y})-\gamma|+|f(x-\bar{y})-\gamma|,
$$

where x, y are arbitrary complex numbers.
Putting $g(z)=f(z)-\gamma$, we have

$$
|g(x+y)|+|g(x-y)|=|g(x+\bar{y})|+|g(x-\bar{y})|
$$

Putting $y=x=\frac{z}{2}=\frac{s+i t}{2}$ where s, t are real and $g(z)=u+i v$ where u, v are real, we have

$$
\begin{equation*}
\sqrt{u^{2}+v^{2}}+|g(o)|=|g(s)|+|g(i t)| \tag{2}
\end{equation*}
$$

Differentiating (2) with respect to x and next with respect to y and using the Cauchy-Riemann equations, we have

$$
\begin{equation*}
\left(-u v_{s s}+v u_{s s}\right)\left(u^{2}+v^{2}\right)=\left(u u_{s}+v v_{s}\right)\left(-u v_{s}+v u_{s}\right) . \tag{3}
\end{equation*}
$$

Since $g(z)$ is not a constant, there exists a properly chosen domain D where $g(z) \neq 0$.

By (3) we have in D

$$
\operatorname{Im}\left(\frac{2 g g^{\prime \prime}-g^{\prime 2}}{g^{2}}\right)=\operatorname{Im}\left\{\frac{2(u+i v)\left(u_{s s}+i v_{s s}\right)-\left(u_{s}+i v_{s}\right)^{2}}{(u+i v)^{2}}\right\}=0
$$

Hence we have

$$
\frac{2 g g^{\prime \prime}-g^{\prime 2}}{g^{2}}=A
$$

where A is a real constant.
Solving this differential equation, we have

