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1. It has been a subject since F. J. Murray and J. von Neumann
[5 that there are two non-hyperfinite, non-isomorphic, continuous
finite factors. Recently, J. Schwartz [7 has affirmatively solved the
subject by introducing the Property P (Definition 1 below). How-
ever, the property P is spatial, and a question still remains to find
that a purely algebraical property can serve his need.

In the present note, we shall introduce a purely algebraical
property, the property Q (Definition 2), and show that the property
.Q is sufficient to serve Schwartz’ need. Actually, we shall show that
the property Q implies the property P in Theorem 1, and that the
properties P and Q are equivalent for a group operator algebra in
Theorem 2. Besides, we shall show directly that the hyperfinite
continuous factor satisfies the property Q in Theorem 5. Furthermore,
we shall show that the tensor product of two von Neumann algebras
having the property Q satisfies also the property Q in Theorem 6.

2. Let G be a (discrete) group. Let L(G) be the algebra of
all bounded complex-valued functions defined on G. A functional

x(g)dg on L(G) a mean, cf. [3, when itwill be called Banach

has the following properties: For x, yeL(G) and g, beG,

fx(g)dg>= 0 if x(g) >= 0 for all g e G,2

4 ./1 dg- 1,

where a and fl are complex numbers. According to Day [3, if G
has a Banach mean, G will be called an amenable group. If [TIgeG}
is a uniformly bounded family of operators on a Hilbert space, then
there exists a finite constant K with [(Tx[y) =KI]x]l.l[yll. Hence
[x ly]--/(Txly)dg is a bounded conjugate bilinear form on the
Hilbert space. Consequently, there exists a unique bounded operator
T such that [_xly]=(Tx[y). We shall call T the operator Banach

G and write it by T--[Todg. A similar construction isnean on


