142. The Number of Tree Semilattices

By Tôru Saitô
Tokyo Gakugei University
(Comm. by Kinjirô KunugI, m.J.A., Nov. 12, 1963)

By a tree semilattice we mean a semilattice T which satisfies the following condition:
if $a \leqq a^{\prime}, b \leqq b^{\prime}, a$ and b are non-comparable, then a^{\prime} and b^{\prime} are non-comparable.
This semilattice plays an important role in the theory of ordered semigroups ([1], [2]).

For a positive integer n, we denote by $T(n)$ the number of nonisomorphic tree semilattices of order n. In this note we give a method of calculating the number $T(n)$.

Let T be a tree semilattice of order n and let 0 be the zero element of T. We denote $T \backslash 0$ by T^{\prime}. Clearly $T(1)=1$. If $n>1$, then T^{\prime} is decomposed into disjoint tree semilattices, say, i tree semilattices of order $1, j$ tree semilattices of order $2, k$ tree semilattices of order 3 and so on. Evidently

$$
n-1=i+2 j+3 k+\cdots
$$

Now there is 1 way of selecting i tree semilattices of order $1,{ }_{T(2)} H_{j}$ ways of selecting j tree semilattices of order $2,{ }_{r(3)} H_{k}$ ways of selecting k tree semilattices of order 3 and so on. Thus we have the following

Theorem. $T(n)$ satisfies the formal relation

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots\right)\left(1+{ }_{T(2)} H_{1} x^{2}+{ }_{T(2)} H_{2} x^{4}+{ }_{T(2)} H_{3} x^{6}+\cdots\right) \\
\left(1+{ }_{T(3)} H_{1} x^{3}+{ }_{T(3)} H_{2} x^{6}+{ }_{T(3)} H_{3} x^{9}+\cdots\right) \\
=T(1)+T(2) x+T(3) x^{2}+T(4) x^{3}+T(5) x^{4}+\cdots .
\end{gathered}
$$

Comparing the corresponding coefficients, we can calculate $T(n)$ recursively. We list the first 10 numbers of $T(n)$.

n	1	2	3	4	5	6	7	8	9	10
$T(n)$	1	1	2	4	9	20	48	115	286	719

Appendix 1. Tree semilattice in the above sense were called flowing semilattice by Tamura [3].
2. In [4], Kimura gave a formula to calculate the number of orderable semilattices (in his sense). Reminding of Theorem 14 in [1], this formula can be obtained by a similar reasoning as in the present paper.

