140. Semigroups Whose Arbitrary Subsets Containing a Definite Element are Subsemigroups

By Morio Sasaki
Department of Mathematics, Iwate University
(Comm. by Kenjiro Shoda, M.J.A., Nov. 12, 1963)

1. Consider a semigroup S satisfying the following condition: Any subset of S which contains a definite element e is a subsemigroup of S.

A semigroup S is called a β^{*}-semigroup if S satisfies the above condition.

For example semigroups of order $2, \beta$-semigroups [4] ${ }^{1 /}$ and Rédei's semigroups are all β^{*}-semigroups, where by a Rédei's semigroup we mean a semigroup satisfying the condition that any non-empty subset is a subsemigroup [2]. ${ }^{2)}$
2. Immediately we have that a homomorphic image of S is a β^{*}-semigroup and any subset of S which contains e is also a β^{*} semigroup.

Putting now $T=\left\{x \in S ; x^{2}=x\right\}, U=\left\{x \in S ; x^{2}=e, x \neq e, e x=x e=e\right\}$, and $V=\left\{x \in S ; x^{2}=e, x \neq e, e x=x e=x\right\}$, it follows that V has at most one element and $S=T+U+V$ (disjoint class-sum).

We define a relation \approx as follows:
$a \approx b$ means that at least one of $a \sim \sim b, a \widetilde{r} b$ and $a \sim b$ holds, provided that $a \sim \underset{\imath}{\sim}[a \sim \underset{r}{\sim} b]$ means $a b=a$ and $b a=b[a b=b$ and $b a=a]$ for a, b in $T, a \sim b$ does $a b=b a=e$ for a, b in $S \backslash T{ }^{3)}$

Then we have the following lemmas.
Lemma 1. \approx is an equivalence relation defined in S.
Lemma 2. For any a, b in U, any c in T and w in V $a \approx b, w \not \approx a$ (\neq denotes the negation of \approx), $w \not \approx c$ and $a \neq c$.
Lemma 3. If $V \neq \square,{ }^{4)}$ then $e \approx a$ implies $e=a$.
Thus we have
Theorem 1. S can be represented as

$$
S=\sum_{\alpha \in \Lambda} S_{\alpha}=\sum_{\lambda \in \Delta_{l}} S_{\lambda}+\sum_{\mu \in \Delta_{r}} S_{\mu}+\sum_{\nu \in \Delta_{0}} S_{\nu} \text { (disjoint class-sum) }
$$

where $\Lambda=\Delta_{l} \smile \Delta_{r} \smile \Delta_{0}, \Delta_{0}=\{\omega, \varepsilon, \nu\}$,
$S_{\lambda}, \lambda \in \Delta_{l}\left[S_{\mu}, \mu \in \Delta_{r}\right]$ is a maximal left [right] zero ${ }^{5)}$ subsemigroup which contains no e,

1) The numbers in brackets refer to the references at the end of the paper.
2) See Theorem 50 in [2].
3) $S \backslash T$ means the set of all elements belonging to S but not to T.
4) \square denotes the empty set.
5) A left [right] zero is a semigroup defined by $x y=x[x y=y]$ for all x, y.
