628 [Vol. 39,

140. Semigroups Whose Arbitrary Subsets Containing a Definite Element are Subsemigroups

By Morio SASAKI

Department of Mathematics, Iwate University (Comm. by Kenjiro SHODA, M.J.A., Nov. 12, 1963)

1. Consider a semigroup S satisfying the following condition: Any subset of S which contains a definite element e is a subsemigroup of S.

A semigroup S is called a β^* -semigroup if S satisfies the above condition.

For example semigroups of order 2, β -semigroups [4]¹⁾ and Rédei's semigroups are all β *-semigroups, where by a Rédei's semigroup we mean a semigroup satisfying the condition that any non-empty subset is a subsemigroup [2].²⁾

2. Immediately we have that a homomorphic image of S is a β^* -semigroup and any subset of S which contains e is also a β^* -semigroup.

Putting now $T=\{x \in S; x^2=x\}$, $U=\{x \in S; x^2=e, x \neq e, ex=xe=e\}$, and $V=\{x \in S; x^2=e, x \neq e, ex=xe=x\}$, it follows that V has at most one element and S=T+U+V (disjoint class-sum).

We define a relation \approx as follows:

 $a \approx b$ means that at least one of $a \sim b$, $a \sim b$ and $a \sim b$ holds, provided that $a \sim b$ [$a \sim b$] means ab = a and ba = b [ab = b and ba = a] for a, b in $a \sim b$ does ab = ba = e for a, b in $a \sim b$ does ab = ba = e for a, $a \sim b$ does ab = ba = e for $a \sim b$ in $a \sim b$ does ab = ba = e for $a \sim b$ does ab = ba does ab = ba = e for $a \sim b$ does ab = ba does ab =

Then we have the following lemmas.

Lemma 1. \approx is an equivalence relation defined in S.

Lemma 2. For any a, b in U, any c in T and w in V

 $a \approx b$, $w \neq a$ (\neq denotes the negation of \approx), $w \neq c$ and $a \neq c$.

Lemma 3. If $V \neq \square$, then $e \approx a$ implies e = a.

Thus we have

Theorem 1. S can be represented as

$$S = \sum_{\alpha \in A} S_{\alpha} = \sum_{\lambda \in A_l} S_{\lambda} + \sum_{\mu \in A_r} S_{\mu} + \sum_{\nu \in A_0} S_{\nu} \text{ (disjoint class-sum)}$$

where $\Lambda = \Delta_1 \smile \Delta_r \smile \Delta_0$, $\Delta_0 = \{\omega, \varepsilon, \upsilon\}$,

 S_{λ} , $\lambda \in \mathcal{A}_{l} [S_{\mu}, \mu \in \mathcal{A}_{r}]$ is a maximal left [right] zero⁵⁾ subsemigroup which contains no e,

- 1) The numbers in brackets refer to the references at the end of the paper.
- 2) See Theorem 50 in [2].
- 3) $S \setminus T$ means the set of all elements belonging to S but not to T.
- 4) denotes the empty set.
- 5) A left [right] zero is a semigroup defined by xy = x[xy = y] for all x, y.