165. On the Uniqueness of Balayaged Measures

By Masanori KISHI

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1963)

Introduction. Let Ω be a locally compact Hausdorff space, every compact subset of which is separable, and G(x, y) be a positive continuous (in the extended sense) kernel on Ω^{10} In [2], we proved that a regular symmetric balayable kernel G satisfies the U- and BUprinciples²⁰ if and only if it is non-degenerate, that is, for any different points x_1 and x_2 in Ω ,

 $G(x, x_1)/G(x, x_2) \equiv \text{any constant in } \Omega.$

In this paper we shall extend this result to non-symmetric kernels.

§1. Non-degeneracy. Theorem 1. If G satisfies the U- or BU-principle, it is non-degenerate.

This is evident.

Theorem 2. Let G be non-degenerate and satisfy

(i) the domination principle or

(ii) the balayage principle and the continuity principle. Then its adjoint kernel \check{G} is non-degenerate.

Proof. If G satisfies the condition (ii), then it satisfies (i).³⁾ Therefore we may assume that G satisfies the domination principle. Contrary suppose that \check{G} is degenerate. Then there are different points x_1 and x_2 such that $G(x_1, x) = aG(x_2, x)$ for any point x in Ω with a positive constant a. Then $G(x_1, x_1)$ and $G(x_2, x_2)$ are finite and $G\varepsilon_{x_1}(x_i) = bG\varepsilon_{x_2}(x_i)$ (i=1, 2) with $b=G(x_1, x_1)/G(x_1, x_2)$. Hence by the domination principle

$$G\varepsilon_{x_1}=bG\varepsilon_{x_2}$$
 in Ω .

This shows that G is degenerate.

Corollary. The adjoint kernel \check{G} is non-degenerate if and only if G is non-degenerate, provided that

(i) G satisfies the domination principle and \check{G} satisfies the continuity principle or

(ii) G satisfies the balayage principle and the continuity principle.

3) Cf. [3, 4].

¹⁾ We use the same notations as in [3].

²⁾ The U-principle means that if G-potentials of positive measures with compact support coincide with each other G-p.p.p. in \mathcal{Q} , then the measures are identical.

The BU-principle means that the G-balayaged measure is uniquely determined by a given positive measure and a compact set.