161. On the Gibbs Phenomenon for Quasi-Hausdorff Means

By Kazuo Ishiguro* and Brian Kuttner** (Comm. by Kinjirô Kunugi, M.J.A., Dec. 12, 1963)

1. The Hausdorff transformation is defined as transforming the sequence $\{s_v\}$ into the sequence $\{h_n\}$ by means of the equation

$$h_n = \sum_{\nu=0}^n \binom{n}{\nu} s_{\nu} \int_0^1 r^{\nu} (1-r)^{n-\nu} d\psi(r),$$

where the weight function $\psi(r)$ is of bounded variation in the interval $0 \le r \le 1$. This transformation is regular if and only if

$$\psi(1) - \psi(0) = 1$$
,

and if $\psi(r)$ is continuous at r=0. We may assume that $\psi(0)=0$, then the above conditions become

$$\psi(1)=1$$
, $\psi(+0)=\psi(0)=0$.

Corresponding to any fixed number r with $0 < r \le 1$, if we put $\psi(x) = e_r(x)$, where

$$e_r(x) = \left\{ \begin{array}{ll} 0 & \text{for} & 0 \leq x < r \\ 1 & \text{for} & r \leq x \leq 1, \end{array} \right.$$

then the Hausdorff transformation reduces to the Euler transformation, i.e.

$$\sigma_n(r) = \sum_{\nu=0}^n \binom{n}{\nu} r^{\nu} (1-r)^{n-\nu} s_{\nu}.$$

The case r=1 corresponds to the ordinary convergence. For the fundamental properties of the Hausdorff and Euler transformations, see, e.g., G. H. Hardy ([1], Chapters VIII and XI).

Let $\phi(t)$ denote the function of period 2π and equal to $\frac{1}{2}(\pi-t)$ in the interval $0 < t < 2\pi$. Then $\phi(t)$ has a simple discontinuity at the origin: its Fourier series is

$$\sum_{n=1}^{\infty} \frac{\sin nt}{n}.$$
 (1)

O. Szász [12, 13] investigated the Gibbs phenomenon of this series for the Hausdorff and Euler means. Here we put $s_0 = s_0(t) = 0$ and $s_{\nu} = s_{\nu}(t) = \sum_{n=1}^{\nu} \frac{\sin nt}{n}$. He proved the following

THEOREM 1. For the regular Hausdorff means of (1) we have $\lim_{n\to\infty}h_n(t_n)\!=\!\int\limits_0^1\!d\psi(r)\int\limits_0^\tau\frac{\sin\,ry}{y}dy,$

as $nt_n \rightarrow \tau$ with $0 \le \tau \le +\infty$.

^{*)} Department of Mathematics, Hokkaido University, Sapporo.

^{**)} Department of Pure Mathematics, University of Birmingham, England.