7. On the Logarithmic Property of the Indices of Endomorphism on a Linear Space

By Perla López de Cicileo and Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 13, 1964)
Let E be a linear space, and let u be an endomorphism on E. We denote the dimension of $u^{-1}(0)$ by $\operatorname{dim}(\operatorname{Ker}(u))$, and the codimension of $u(E)$ by $\operatorname{cod}(\operatorname{Im}(u))$. If one of these values is finite, $d(u)$ $=\operatorname{dim}(\operatorname{Ker}(u))-\operatorname{cod}(\operatorname{Im}(u))$ is called the index of u.

In his paper [1], M. Audin proved the logarithmic property of the indices:

Theorem. Let u, v be endomorphisms on E. If one of the indices of u, v is finite, then

$$
d(v \circ u)=d(u)+d(v) .
$$

In this note, we shall show that the result follows from the Deprit useful lemma [2]. We only consider that $d(u), d(v)$ are finite (see M. Audin [1]).

Lemma (Deprit). Let E, F and G be linear spaces, and let $u(v)$ be a linear transformation from $E(F)$ to $F(G)$. Then E is the direct sum of three linear spaces satisfying the following conditions:

1) $E=\operatorname{Ker}(u) \oplus E_{1} \oplus E_{2}$,
2) $\operatorname{Ker}(v \circ u)=\operatorname{Ker}(u) \oplus E_{1}$,
3) $\operatorname{Im}(v \circ u)=v\left(u\left(E_{2}\right)\right)$,
4) E_{1} is isomorphic with $\operatorname{Ker}(v) \cap \operatorname{Im}(u)$,
5) $\quad E_{2}$ is isomorphic with $\operatorname{Im}(u) / \operatorname{Ker}(v) \cap \operatorname{Im}(u)$.

Let $d(u)$ and $d(v)$ be finite indices, then, from 2) and 4), we have $\operatorname{dim}(\operatorname{Ker}(v \circ u))=\operatorname{dim}(\operatorname{Ker}(u))+\operatorname{dim} E_{1}$

$$
\begin{equation*}
=\operatorname{dim}(\operatorname{Ker}(v))+\operatorname{dim}(\operatorname{Ker}(v) \bigcap \operatorname{Im}(u)) . \tag{1}
\end{equation*}
$$

On the other hand, we have an isomorphic relation:

$$
F /(\operatorname{Im}(u)+\operatorname{Ker}(v)) \simeq \operatorname{Im}(v) / \operatorname{Im}(v \circ u)
$$

If $E=F=G$, then

$$
E /(\operatorname{Im}(u)+\operatorname{Ker}(v)) \simeq \operatorname{Im}(v) / \operatorname{Im}(v \circ u) .
$$

Hence

$$
\begin{aligned}
\operatorname{dim} & (\operatorname{Im}(v))-\operatorname{dim}(\operatorname{Im}(v \circ u)) \\
& =\operatorname{dim} E-\operatorname{dim}(\operatorname{Im}(u)+\operatorname{Ker}(v)) \\
& =\operatorname{dim} E-[\operatorname{dim}(\operatorname{Im}(u))+\operatorname{dim}(\operatorname{Ker}(v))-\operatorname{dim}(\operatorname{Im}(u) \cap \operatorname{Ker}(v))] \\
& =\operatorname{cod}(\operatorname{Im}(u))-\operatorname{dim}(\operatorname{Ker}(v))+\operatorname{dim}(\operatorname{Im}(u) \cap \operatorname{Ker}(v)) .
\end{aligned}
$$

Therefore, we have

$$
\operatorname{dim} E-\operatorname{dim}(\operatorname{Im}(v \circ u))=\operatorname{cod}(\operatorname{Im}(u))-\operatorname{dim}(\operatorname{Ker}(v))
$$

$$
+\operatorname{dim} E-\operatorname{dim}(\operatorname{Im}(v))+\operatorname{dim}(\operatorname{Im}(u) \cap \operatorname{Ker}(v))
$$

Hence

