1. On Bochner Transforms. III

Case of p-adic Number Fields

By Koziro IWASAKI

Musashi Institute of Technology, Tokyo (Comm. by Zyoiti Suetuna, M.J.A., Jan. 13, 1964)

1. In the following we shall consider Bochner transforms attached to matrices algebras over p-adic number fields.

Let k be a completion of a finite algebraic number field with respect to a finite prime ideal $\mathfrak{p},\mathfrak{o}$ the ring of integers in k,π a prime element of k and \mathfrak{u} the unit group. We denote by A,O,G, and U the matrices algebra M(n,k), the order $M(n,\mathfrak{o})$, the group GL(n,k) and the unit group of O respectively. Let \mathcal{F} mean the space of the all U-biinvariant continuous functions integrable on A.

Definition. The Bochner transform $T = T_k^n$ is a linear operator on \mathcal{F} which satisfies the following conditions (B):

- (B'₁) the characteristic function $\varepsilon(x)$ of O is mapped to itself by T,
- $(\mathbf{B}_2)\quad as\quad a\quad function\quad of\quad x,\quad \int\limits_{U}\varphi(xuw)du\quad with\quad \varphi\in\mathcal{F}\quad and\quad w\in G\quad is$ $mapped\quad to\quad \int\limits_{U}T\varphi(xu^tw^{-1})du\,|\det w\>|_{\mathfrak{p}}^{-k}\quad by\quad T\quad (du\ \ \text{is\ the\ Haar\ measure\ of}$ $U\ \ \text{normalized\ by}\quad \int\limits_{U}du=1),$
- (B_4) there is a U-biinvariant continuous function $\alpha(x)$ on O such that

$$\int_{\Omega} \alpha(x) \varphi(x) dx = \int_{\Omega} \alpha(x) T\varphi(x) dx$$

for any function $\varphi \in \mathcal{F}$ (see [3]).

Remarks. (i) The function $\varepsilon(x)$ in (B_1') corresponds to the function $e^{-\pi x^2}$ in (B_1) of [3] as p-component of the function defined on the adele ring appeared in the proof of the functional equation of Riemann zeta-function in the thesis of Tate [4].

- (ii) Condition (B_4) is an analogy of the modular relation (Bochner [2]). On the stand point of Bochner-Chandrasekharan it may be better to consider integrals on an arbitrary compact set. But we treat only the analogy of ordinary modular forms.
 - (iii) Using the zonal spherical function

$$\omega(w; s) = \omega(w; s_1, s_2, \dots, s_n) = \int_U |\prod_{i=1}^n t_i(wu)|_{\mathfrak{p}}^{-s_{i+(i-1)}} du,$$

where $t_i(x)$ is the i-th diagonal element of the upper trigonal part