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(5.1)

5 For the proof of Theorem 1, we shall prove the following
Lemma.

2 f du flsin uL* (n; )-

2+- ()-(-0) og n+o (og n).

It may be noted that the upper limits of the Stieltjes integrals
in (3.4) and (5.1) are different.

Proof. We shall use the method of L. Lorch and D. J. Newman
[5. In order to simplify the following calculations, we shall prove

(5.2) L*(n-- 1; ) 2 sinud(r) +
7. U

+2 I(1)-(1-0)11og n/o (log n).
7

It is easily seen that (5.1) and (5.2) are equivalent for large n.
Replacing the factor {sin (2n+ 1)u}/sin u by {sin 2(n+ 1)u}/u in

(3.4) induces a bounded error, we obtain, from (2.2),

where

(5.3)

L*(n-- 1; )--2  n(U) +o(1),
7 U

Kn(u)--
4(l--r) sinu r1 +

r

For fixed and A with 0slA, we put

du -*f +f +f/u , ,
where

As to I:

d(r).

=L++I,

In the interval 0_<.u_<n we have

1_( 1 )-___ 1_,1+ 4(1 --r) sin u
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