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§ 5. For the proof of Theorem 1, we shall prove the following
Lemma.
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It may be noted that the upper limits of the Stieltjes integrals
in (3.4) and (5.1) are different.

Proof. We shall use the method of L. Lorch and D. J. Newman
[5]. In order to simplify the following calculations, we shall prove
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It is easily seen that (5.1) and (5.2) are equivalent for large n.
Replacing the factor {sin 2n+1)u}/sinu by {sin2(n+1)u}/u in
(8.4) induces a bounded error, we obtain, from (2.2),

Li(n— w>—-f | K. 2 o),

where
(5.3) K, ()= f ( 4(1 T)

For fixed ¢ and A with O<s<1<A we put
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where §* =d/v2(1—0).

As to I;: In the interval 0<u<%5* we have
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