36. A Property of Green's Star Domain

By Mitsuru Nakai
Mathematical Institute, Nagoya University
(Comm. by Kinjirô Kunugi, m.J.A., March 12, 1964)

Let R be a hyperbolic Riemann surface and $g(p, o)$ be the Green function on R with its pole o in R. The Geen's star domain $R^{g, o}$ with respect to R and o is the set of points in R which can be joined by Green arcs issuing from o. We also assume that o is a member of $R^{g, o}$. We shall see that $R^{g, o}$ is a simply connected domain. Hence we can map $R^{g, o}$ onto the open unit circular disc by a one-toone conformal mapping φ. We shall show that the image of a singular Green line (i.e. a Green line on which $g(p, o)$ has a positive infimum) issuing from o by φ is a Jordan curve starting from $\varphi(o)$ and terminating at a point of the unit circumference. We denote by N_{φ} the totality of end points on the unit circumference of image curves of singular Green lines issuing from o by the mapping φ. The main purpose of this paper is to show that N_{φ} is of logarithmic capacity zero.

1. Let R be a hyperbolic Riemann surface. This means that there exists the Green function $g(p, o)$ with the arbitrary given pole o in R. We define the pair $(r(p), \theta(p))$ of local functions on R by the relations

$$
\begin{cases}d r(p) / r(p) & =-d g(p, o) \\ d \theta(p) & =-{ }^{*} d g(p, o) .\end{cases}
$$

By giving the initial condition $r(o)=0, r(p)$ is the global function $e^{-g(p, 0)}$ on R. Each branch of $r(p) e^{i \theta(p)}$ can be taken as a local parameter at each point of R except possibly a countable number of points at which $d \theta(p)=0$. A Green arc is an open arc on which $\theta(p)$ is a constant, being considered locally, and $d \theta(p) \neq 0$. A Green line is a maximal Green arc. We denote by $G(R, o)$ the totality of Green lines issuing from o. We set, for each $L \in G(R, o)$,

$$
d(L)=\sup (r(p) ; p \in L)
$$

Clearly $0<d(L) \leq 1$. We say that $L(\in G(R, o))$ is a singular Green line if $d(L)<1$. We denote by $N(R, o)$ the set of all singular Green lines in $G(R, o)$. We also denote by $E(R, o)$ the totality of L in $G(R, o)$ such that the closure of L contains a point $p(\neq 0)$ with $d \theta(p)=0$. Clearly $G(R, o) \supset N(R, o) \supset E(R, o)$. We set

$$
R^{g, o}=(o) \smile(p \in R ; p \in L \text { for some } L \text { in } G(R, o)) .
$$

We call the set $R^{g, o}$ the Green's star domain with respect to R and o. Then we see that

