No. 6]

89. On Endomorphism with Fixed Element on Algebra

By Kivoshi Iséki

(Comm. by Kinjirô Kunugi, M.J.A., June 12, 1964)

In this note, we shall consider endomorphisms with a fixed element on general algebra. For simplicity, we consider an endomorphism T on a semigroup S. Let us suppose T(a)=a. We denote the kernel of the endomorphism T^n , i.e. the set of all elements x such that $T^n(x)=a$ by $\ker(T^n)$, and the image $T^n(S)$ by $\operatorname{Im}(T^n)$. If for some n, $\ker(T^n)=\ker(T^{n+1})$, then T is called a γ -endomorphism. Then we have $\ker(T^n)=\ker(T^{n+1})=\cdots=\ker(T^n)=\cdots$, where $n\leq m$. The least number n satisfying $\ker(T^n)=\ker(T^{n+1})$ is called the order of T.

Let n be the order of T, then for $n \le m$, we have

$$\ker (T^m) \cap \operatorname{Im} (T^m) = (a). \tag{1}$$

To prove it, let $x \in \ker(T^m) \cap \operatorname{Im}(T^m)$, then we have $T^m(x) = a$ and $x = T^m(y)$ for some $y \in S$. Hence $T^{2m}(y) = T^m(x) = a$, so $y \in \ker(T^{2m}) = \ker(T^m)$. Therefore $T^m(y) = a$, and we have x = a.

Conversely, the least number m satisfying (1) is the order of T. It is sufficient to prove that (1) implies $\ker (T^m) = \ker (T^{m+1})$. In general, we have

$$(a) \subset \ker(T) \subset \ker(T^2) \subset \cdots. \tag{2}$$

To prove the inclusion $\ker(T^{m+1}) \subset \ker(T^m)$, let $x \in \ker(T^{m+1})$. Then $T^{m+1}(x) = a$ and so $T(T^m(x)) = a$.

Hence $T^m(x) \in \ker(T)$. On the other hand, (1) and (2) imply $\ker(T) \cap \operatorname{Im}(T^m) = (a)$. Therefore $T^m(x) \in \ker(T) \cap \operatorname{Im}(T^m) = (a)$, and we have $T^m(x) = a$. This means $x \in \ker(T^m)$.

Therefore we have the following

THEOREM. Let T be a γ -endomorphism of order n on a semi-group S, and T(a)=a. Then for $m \ge n$,

$$\ker (T^m) \cap \operatorname{Im} (T^m) = (a). \tag{1}$$

Conversely, the least number m satisfying (1) is the order of T.

A similar result for linear spaces has been stated by several authors, for example, by M. Audin [1], and for the case of groups by H. Ramalho $\lceil 2 \rceil$.

References

- [1] M. Audin: Sur les équations linéaires dans un espace vectoriel. Alger, Mathématique, 4, 5-71 (1957).
- [2] M. Ramalho: Sur quelques théorèmes de la théorie des groupes. Rev. Fac. Ciências Lisboa 2, série A, 8, 333-337 (1961).