101. On Boundary Value Problem for Parabolic Equations

By Reiko ARIMA

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1964)

1. Introduction. Let us consider the parabolic equation (1) $\frac{\partial}{\partial t}u = Au$ in $(0, T) \times \Omega$ $\left(A = \sum_{|\nu| \leq 2b} a_{\nu}(t, x) \left(\frac{\partial}{\partial x}\right)^{\nu}, \ L = \frac{\partial}{\partial t} - A\right)$ with the zero initial data and the general boundary data (2) $B_{i}u = f_{i}$ $(j = 1, \dots, b)$ on $(0, T) \times S$

$$\left(\beta_{j} = \sum_{|\nu| \leq r_{j}} b_{j\nu}(t, x) \left(\frac{\partial}{\partial x}\right)^{\nu}, \ 0 \leq r_{j} \leq 2b-1\right),$$

where Ω is a domain in \mathbb{R}^n surrounded by a hypersurface S.

Recently, this problem was treated by Eidelman for systems ([1]). Here we use his construction and estimates of kernels in the case of constant coefficients and Ω is a half space. We shall introduce an operator defined on the boundary which plays an analogous role to the Riemann-Liouville-operator which was used by Mihailov in one dimensional case ([2]), therefore we need not assume that all r_j coincide, which was assumed by Eidelman in case of non-convex region. Finally we have the estimates for the Green function.^{*}

I thank Prof. Mizohata very much for his kind advices and encouragements throughout this subject.

Now, let $\{\overline{V}\}_I$ be a finite covering of S and a point $x = (x_1, \dots, x_n)$ of \overline{V} be represented by a local coordinate $\overline{x}' = (\overline{x}_1, \dots, \overline{x}_{n-1})$, such that $x_j = F_j(\overline{x}')$ $(j=1,\dots,n)$, where $F_j(\overline{x}')$ is of class- C^s $(s=2b+1+\gamma,\gamma>0)$, and $\overline{x}' = \overline{x}'(\overline{x}')$ is class- C^s where $x \in \overline{V} \cap \overline{V}$. Then we have a *n*-dimensional neighbourhood $\overline{U} \supset \overline{V}$, such that the transformation defined by $x_j = F_j(\overline{x}') + N_j(\overline{x}')\dot{x}$ $(j=1,2,\dots,n)$ is one-to-one and of class- c^{s-1} between $x \in \overline{U}$ and \overline{x} , where $N_x = (N_1,\dots,N_n)$ is the unit inner normal vector at $x \in S$. Here we put $\widetilde{S} = \bigcup_I \overline{U}$.

Put $A_0(\eta+zN_x;t,x) = (-1)^b \sum_{|\nu|=2b} a_\nu(t,x)(\eta+zN_x)^{\nu}$ and $B_{0j}(\eta+zN_x;t,x) = (i)^{r_j} \sum_{|\nu|=r_j} b_{j\nu}(t,x)(\eta+zN_x)^{\nu}$, where $\eta \in T_x = R^n/\{zN_x\}$, $z \in R^1$, $t \in (0, T)$, $x \in S$. Let $A_{0+}(p,\eta,z;t,x)$ be the polynomial of z of degree b (the coefficient of z^b is 1), where the roots are composed of all the roots z of $p-A_0$ $(\eta+zN_x;t,x)=0$, having the positive imaginary part. Then let us denote

^{*)} Detailed proof will be published in a forthcoming paper.