101. On Boundary Value Problem for Parabolic Equations

By Reiko Arima
(Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1964)

1. Introduction. Let us consider the parabolic equation

$$
\begin{gather*}
\frac{\partial}{\partial t} u=A u \quad \text { in } \quad(0, T) \times \Omega \tag{1}\\
\left(A=\sum_{|\nu| \leq 2 b} a_{\nu}(t, x)\left(\frac{\partial}{\partial x}\right)^{\nu}, L=\frac{\partial}{\partial t}-A\right)
\end{gather*}
$$

with the zero initial data and the general boundary data

$$
\begin{gather*}
B_{j} u=f_{j}(j=1, \cdots, b) \quad \text { on } \quad(0, T) \times S \tag{2}\\
\left(\beta_{j}=\sum_{i \nu \mid \leqq r_{j}} b_{j \nu}(t, x)\left(\frac{\partial}{\partial x}\right)^{\nu}, \quad 0 \leqq r_{j} \leqq 2 b-1\right),
\end{gather*}
$$

where Ω is a domain in R^{n} surrounded by a hypersurface S.
Recently, this problem was treated by Eidelman for systems ([1]). Here we use his construction and estimates of kernels in the case of constant coefficients and Ω is a half space. We shall introduce an operator defined on the boundary which plays an analogous role to the Riemann-Liouville-operator which was used by Mihailov in one dimensional case ([2]), therefore we need not assume that all r_{j} coincide, which was assumed by Eidelman in case of non-convex region. Finally we have the estimates for the Green function.*)

I thank Prof. Mizohata very much for his kind advices and encouragements throughout this subject.

Now, let $\{\bar{V}\}_{I}$ be a finite covering of S and a point $x=\left(x_{1}, \cdots, x_{n}\right)$ of \bar{V} be represented by a local coordinate $\bar{x}^{\prime}=\left(\bar{x}_{1}, \cdots, \bar{x}_{n-1}\right)$, such that $x_{j}=F_{j}\left(\bar{x}^{\prime}\right)(j=1, \cdots, n)$, where $F_{j}\left(\bar{x}^{\prime}\right)$ is of class- $C^{s}(s=2 b+1+\gamma, \gamma>0)$, and $\bar{x}^{\prime}=\bar{x}^{\prime}\left(\bar{x}^{\prime}\right)$ is class- C^{s} where $x \in \bar{V} \cap \overline{\bar{V}}$. Then we have a n-dimensional neighbourhood $\bar{U} \supset \bar{V}$, such that the transformation defined by $x_{j}=F_{j}\left(\bar{x}^{\prime}\right)+N_{j}\left(\bar{x}^{\prime}\right) \dot{x} \quad(j=1,2, \cdots, n)$ is one-to-one and of class- c^{s-1} between $x \in \bar{U}$ and \bar{x}, where $N_{x}=\left(N_{1}, \cdots, N_{n}\right)$ is the unit inner normal vecter at $x \in S$. Here we put $\widetilde{S}=\cup_{I} \bar{U}$.

Put $A_{0}\left(\eta+z N_{x} ; t, x\right)=(-1)^{b} \sum_{|\nu|=2 b} a_{\nu}(t, x)\left(\eta+z N_{x}\right)^{\nu}$ and $B_{0 j}\left(\eta+z N_{x} ; t, x\right)$ $=(i)^{r_{j}} \sum_{|\nu|=r_{j}} b_{j \nu}(t, x)\left(\eta+z N_{x}\right)^{\nu}$, where $\eta \in T_{x}=R^{n} /\left\{z N_{x}\right\}, z \in R^{1}, t \in(0, T), x \in S$. Let $A_{0+}(p, \eta, z ; t, x)$ be the polynomial of z of degree b (the coefficient of z^{b} is 1), where the roots are composed of all the roots z of $p-A_{0}$ $\left(\eta+z N_{x} ; t, x\right)=0$, having the positive imaginary part. Then let us denote

[^0]
[^0]: ${ }^{*}$ Detailed proof will be published in a forthcoming paper.

