141. A Remark on Quasiideals of Regular Ring

By Jiang LUH

Indiana State College, U.S.A. (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1964)

Let A be a ring. A is said to be regular (strongly regular) if for every element $a \in A$ there exists an element $x \in A$ such that axa = a $(a = x^2a)$. A subring Q of A is called a quasiideal of A if $AQ \cap QA$ $\subseteq Q$. The concepts of a regular semigroup and quasiideal of a semigroup are described analogously. It is easy to see that a subring Q of a ring A is a quasiideal of A when and only when Q is a quasiideal of the multiplicative semigroup A. Various necessary and sufficient conditions for the regularity of rings are to be found in the literature (see [1], [3]). In this note we establish yet another such condition which does not appear to have been stated previously.

S. Lajos [2] has recently proved that the product of two quasiideals of a regular ring is a quasiideal. Thus, the collection of quasiideals of a regular ring forms a multiplicative semigroup. Considering this connection of regular ring with its quasiideals, we shall prove the following

Theorem. Let A be a ring and let \mathfrak{A} be the collection of all quasiideals of A. Then A is regular if and only if \mathfrak{A} is a regular multiplicative semigroup.

Before proving this theorem we shall recall the following result. Lemma. A ring A is regular if and only if, for every quasiideal Q of A, QAQ=Q (see [3]).

Proof of the theorem. Necessity. Assume that A is a regular ring and that $Q \in \mathfrak{A}$. Then, by the lemma, Q=QAQ, and \mathfrak{A} is therefore a regular semigroup since $A \in \mathfrak{A}$.

Sufficiency. Suppose that \mathfrak{A} is a regular semigroup. Let $Q \in \mathfrak{A}$. By virtue of the lemma we need only to show that QAQ=Q. In fact, by the regularity of \mathfrak{A} there exists $P \in \mathfrak{A}$ such that Q=QPQand hence $Q \subseteq QAQ$. But, on the other hand, $QAQ \subseteq QA \cap AQ \subseteq Q$. Thus QAQ=Q and the theorem follows.

It is known that a ring A is strongly regular if and only if every quasiideal of A is idempotent (see [1]). An immediate consequence is the following

Corollary. Let A be a ring and let \mathfrak{A} be the collection of all quasiideals of A. Then A is strongly regular if and only if \mathfrak{A} is an idempotent multiplicative semigroup.

Finally, it should be noted that by similar arguments we can